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Let us begin by recalling the Gram-Schmidt procedure.

Let V be a real (or complex) vector space with a (positive-definite) inner product. For

example, we could let V = R
n (or Cn) with inner product the usual ”dot product”, i.e.,

〈v,w〉= v ·w (or 〈v,w〉= v ·w).

Theorem. Let W be a subspace of V of finite or countably infinite dimension, and

let B = {x1,x2, . . .} be an arbitrary ordered basis of W. Let C = {y1,y2, . . .} and D =
{z1,z2, . . .} be defined as follows:

Let y1 = x1 and z1 = y1/‖y1‖.

If y1, . . . ,yi−1 are defined, let

yi = xi−
i−1

∑
k=1

(〈xi,yk〉/‖yk‖2)yk and zi = yi/‖yi‖.

Then C is an orthogonal basis of W and D is an orthonormal basis of W. Furthermore,

Span({z1, . . . ,zi}) = Span({y1, . . . ,yi}) = Span({x1, . . . ,xi}) for each i.

The bases C and D obtained in this way are said to be obtained from the basis B by

the Gram-Schmidt procedure.
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Proof. Suppose that {y1, . . . ,yi−1} is orthogonal. Then for any j between 1 and i−1,

〈yi,y j〉= 〈xi−
i−1

∑
k=1

(〈xi,yk〉/‖yk‖2)yk,y j〉

= 〈xi,y j〉−
i−1

∑
k=1

〈xi,yk〉/‖yk‖2〈yk,y j〉

= 〈xi,y j〉− (〈xi,y j〉/‖y j‖2)(‖y j‖2) = 0

as 〈yk,y j〉 = 0 for k 6= j by orthogonality, and as 〈y j,y j〉 = ‖y j‖2. Hence {y1, . . . ,yi} is

orthogonal.

Thus by induction the set {y1, . . . ,yi} is orthogonal for any i, and that means, even if

there are infinitely many vectors, that the set {y1,y2, . . .} is orthogonal, as given any two

vectors y j and yk in this set they lie in some finite subset, namely in {y1, . . . ,yi} with

i = max( j,k).
Then if {y1,y2, . . .} is orthogonal, {z1,z2, . . .} is orthonormal, as each zi is a multiple of

yi and ‖zi‖= 1 for each i.

Finally, from the construction of yi we see that yi is of the form yi = xi + c1y1 + · · ·+
ci−1yi−1 for some scalars c1, . . . ,ci−1, for each i, so Span({z1, . . . ,zi}) = Span({y1, . . . ,yi})
= Span({x1, . . . ,xi}) for each i. �

Note that the result of the Gram-Schmidt procedure depends on the order of the vectors

in the original ordered basis B.

Example. Let V = R
3 and let B = {





1

2

2



 ,





0

2

3



 ,





0

3

4



}. We use the Gram-Schmidt

procedure to convert B to an orthonormal basis D of R3.

We begin with x1 =





1

2

2



. Then y1 = x1 =





1

2

2



 and z1 = y1/‖y1‖=





1/3

2/3

2/3



.

Next consider x2 =





0

2

3



. Then y2 = x2− (〈x2,y1〉/‖y1‖2)y1,

y2 =





0

2

3



−



〈





0

2

3



 ,





1

2

2



〉/9









1

2

2



=





0

2

3



− (10/9)





1

2

2



=





−10/9

−2/9

7/9





and z2 = y2/‖y2‖=





−10/
√

17

−2/3
√

17

7/3
√

17



.
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Next consider x3 =





0

3

4



. Then y3 = x3− (〈x3,y1〉/‖y1‖2)y1− (〈x3,y2〉/‖y2‖2)y2,

y3 =





0

3

4



−



〈





0

3

4



 ,





1

2

2



〉/9









1

2

2



−



〈





0

3

4



 ,





−10/9

−2/9

7/9



〉/(17/9)









−10/9

−2/9

7/9





=





0

3

4



− (14/9)





1

2

2



− (22/17)





−10/9

−2/9

7/9



=





−2/17

3/17

−2/17





and z3 = y3/‖y3‖=





−2/
√

17

3/
√

17

−2/
√

17



.

Example. Let V = R
3 and let B = {





0

3

4



 ,





0

2

3



 ,





1

2

2



}. We use the Gram-Schmidt

procedure to convert B to an orthonormal basis D of R3.

We begin with x1 =





0

3

4



. Then y1 = x1 =





0

3

4



 and z1 = y1/‖y1‖=





0

3/5

4/5



.

Next consider x2 =





0

2

3



. Then y2 = x2− (〈x2,y1〉/‖y1‖2)y1,

y2 =





0

2

3



−



〈





0

2

3



 ,





0

3

4



〉/25









0

3

4



=





0

2

3



− (18/25)





0

3

4



=





0

−4/25

3/25





and z2 = y2/‖y2‖=





0

−4/5

3/5



.

Next consider x3 =





1

2

2



. Then y3 = x3− (〈x3,y1〉/‖y1‖2)y1− (〈x3,y2〉/‖y2‖2)y2,

y3 =





1

2

2



−



〈





1

2

2



 ,





0

3

4



〉/25









0

3

4



−



〈





1

2

2



 ,





0

−4/25

3/25



〉/(1/25)









0

−4/25

3/25





=





1

2

2



− (14/25)





0

3

4



− (−2)





0

−4/25

3/25



=





1

0

0





and z3 = y3/‖y3‖=





1

0

0



.
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Now we look at the situation that interests us.

Let P = {real polynomials f (x)} with inner product

〈 f (x),g(x)〉=
∫ 1

−1
f (x)g(x)w(x)dx

for a suitable ”weight” function w(x).

Let B = {1,x,x2, . . .}. We apply the Gram-Schmidt procedure to obtain an orthogo-

nal basis {F0(x),F1(x),F2(x), . . .} for P , except we normalize by specifying the values

{Fn(1) | n = 0,1, . . .}.

Here are three classical cases:

(a) w(x) = 1 and Fn(1) = 1 for every n. The polynomials obtained in this way are the

Legendre polynomials {Pn(x)}. The first few of these polynomials are given by

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2−1)

P3(x) =
1

2
(5x3−3x)

P4(x) =
1

8
(35x4−30x2 +3)

P5(x) =
1

8
(63x5−70x3 +15x)

P6(x) =
1

16
(231x6−315x4 +105x2−5)

P7(x) =
1

16
(429x7−693x5 +315x3−35x)

(b) w(x) = 1/
√

1− x2 and Fn(1) = 1 for every n. The polynomials obtained in this way

are the Chebyshev polynomials of the first kind {Tn(x)}. The first few of these polynomials

are given by

T0(x) = 1

T1(x) = x

T2(x) = (2x2−1)

T3(x) = (4x3−3x)

T4(x) = (8x4−8x2 +1)

T5(x) = (16x5−20x3 +5x)

T6(x) = (32x6−48x4 +18x2−1)

T7(x) = (64x7−112x5 +56x3−7x)
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(c) w(x) =
√

1− x2 and Fn(1) = n+ 1 for every n. The polynomials obtained in this

way are the Chebyshev polynomials of the second kind {Un(x)}. The first few of these

polynomials are given by

U0(x) = 1

U1(x) = 2x

U2(x) = (4x2−1)

U3(x) = (8x3−4x)

U4(x) = (16x4−12x2 +1)

U5(x) = (32x5−32x3 +6x)

U6(x) = (64x6−80x4 +24x2−1)

U7(x) = (128x7−192x5 +80x3−8x)

These polynomials are all known in general.

We think of these polynomials as being obtained by applying the Gram-Schmidt proce-

dure ”from the bottom up”, and it seemed to us a natural question to ask what happens if

we apply this procedure ”from the top down”. Of course, B has no ”top”. But instead, for

any nonnegative integer n, we may let Pn be the vector space of polynomials of degree at

most n, equipped with the same inner product, and apply the Gram-Schmidt procedure to

the ordered basis B = {xn,xn−1, . . . ,1} of Pn to obtain polynomials

{
←
Fn

n(x),
←
Fn

n−1(x), . . . ,
←
Fn

0(x)}
with appropriate normalization.

Since these polynomials are obtained by reversing the order of the basis elements, we

call these reverse orthogonal polynomials. In particular we have:

(a) w(x) = 1 and
←
Pn

k(1) = 1 for every n,k, the reverse Legendre polynomials.

(b) w(x) = 1/
√

1− x2 and
←
T n

k(1) = 1 for every n,k, the reverse Chebyshev polynomials

of the first kind.

(b) w(x) =
√

1− x2 and
←
U2m+1+k

k (1) =
←
U2m+k

k (1) = 2m+ 2 for every m,k, the reverse

Chebyshev polynomials of the second kind.

These are our objects of interest.

We explicitly determine these polynomials and describe some of their properties.
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General properties of reverse orthogonal polynomials

We begin more generally, but we make the restriction that the weight function w(x) is

an even function.

We let {cn
k} be an arbitrary set of nonzero real numbers and normalize the functions

{
←
Fn

k(x)} by setting
←
Fn

k(1) = cn
k .

Theorem 1. Let m, n and k be nonnegative integers with k ≤ n.

(a) The reverse orthogonal polynomial
←
Fn

k(x) is a polynomial of degree at most n whose

low-order term is a nonzero multiple of xk.

(b)
←
Fn

k(x) is an even polynomial if k is even and an odd polynomial if k is odd.

(c)
←
F2m+k+1

k (x) = (c2m+1+k
k /c2m+k

k )
←
F2m+k

k (x). In particular, if c2m+1+k
k = c2m+k

k ,
←
F2m+k+1

k (x) =
←
F2m+k

k (x).

(d)
←
F2m+k

k (x) is a polynomial of degree 2m+ k, with a zero of order k at x = 0 and

2m simple zeroes at nonzero values of x, all of them real numbers symmetrically located

around the origin and lying in the open interval (−1,1).

(e)
←
Fn

k(x) is a polynomial of degree n if n− k is even and of degree n−1 if n− k is odd.

(f) The reverse orthogonal polynomial
←
Fn

k(x) is uniquely determined by the condition

(a) above and by the orthogonality relations 〈
←
Fn

j(x),
←
Fn

k(x)〉= 0 for j > k and the normal-

ization
←
Fn

k(1) = cn
0.

Proof. (d) By (a) and (b), we have that
←
F2m+k

k (x) = xk f (x) for some even polynomial

f (x) of degree at most 2m with nonzero constant term. Thus the zeroes of f (x) all occur

at nonzero values of x, symmetrically located with respect to the origin. Let f (x) have t

zeroes of odd order r1, . . . ,rt in the interval (−1,1). We have that t ≤ 2m, so if we show

that t = 2m we will have established that these are all the zeroes of f (x), that they are all

simple, and that
←
F2m+k

k (x) has degree 2m+k. We argue by contradiction. Suppose t < 2m.

Since t is even, t ≤ 2m− 2. Let g(x) = (x− r1) · · ·(x− rt) and h(x) = xk+2g(x). Then on

the one hand

〈
←
F2m+k

k (x),h(x)〉=
∫ 1

−1
(xk f (x))(xk+2g(x))w(x)dx =

∫ 1

−1
x2k+2 f (x)g(x)w(x)dx 6= 0,

as x2k+2 f (x)g(x) has constant sign in [−1,1] and is not identically zero. But on the other

hand, h(x) is a polynomial of degree at most (k+ 2)+ (2m− 2) = 2m+ k with low-order

term of degree k+2, so
←
F2m+k

k (x) is orthogonal to h(x), i.e., 〈
←
F2m+k

k (x),h(x)〉= 0; contra-

diction.

(f) If V is the vector space of polynomials whose high-order term has degree at most

n and whose low-order term has degree at least k, and U is the subspace of polynomi-

als whose high-order term has degree at most n and whose low-order term has degree at

least k+ 1, then U is a codimension 1 subspace of V so its orthogonal complement is 1-

dimensional, consisting of multiples of any nonzero element.
←
Fn

k(x) is an element of this
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subspace, and so to specify it uniquely we need only normalize it, and we do so by speci-

fying
←
Fn

k(1). (In order to do so, we must know that no nonzero element of this subspace is

0 for x = 1, and that follows from (d).) �

There are some cases in which we can readily determine
←
Fn

k(x).

Theorem 2. (a)
←
Fn+1

n (x) = cn+1
n xn and

←
Fn

n(x) = cn
nxn for all n≥ 0.

In particular, if cn+1
n = cn

n,
←
Fn+1

n (x) =
←
Fn

n(x).

(b)
←
F2m+1

0 (x) = (c2m+1
0 /F2m+1(1))F2m+1(x)/x and

←
F2m

0 = (c2m
0 /F2m+1(1))F2m+1(x)/x

for all m≥ 0.

In particular, if c2m+1
0 = c2m

0 = F2m+1(1),
←
F2m+1

0 (x) =
←
F2m

0 (x) = F2m+1(x)/x.

Proof. (a) is immediate.

As for (b), let n = 2m or 2m+ 1. We first note that F2m+1(x) is an odd polynomial

of degree 2m+ 1 with nonzero x term, so the quotient F2m+1(x)/x is an even polynomial

of degree 2m ≤ n with a nonzero constant term. We show that F2m+1(x)/x satisfies the

conditions of Theorem 1.3(f) and therefore
←
F2m+1

0 (x) = F2m+1(x)/x. By Theorem 1.3(a),

we have that, for any j between 1 and n,
←
Fn

j(x) is a polynomial of degree at most n that is

divisible by x j, so in particular, for any such j,
←
Fn

j(x)/x is a polynomial of degree at most

n−1≤ 2m. But then

〈
←
Fn

j(x),F2m+1(x)/x〉=
∫ 1

−1

←
Fn

j(x)(F2m+1(x)/x)w(x)dx

=
∫ 1

−1
(
←
Fn

j(x)/x)F2m+1(x)w(x)dx = 〈
←
Fn

j(x)/x,F2m+1(x)〉= 0,

as F2m+1(x) is orthogonal to every polynomial of degree at most 2m.

Also, the value of the polynomial
←
F2m+1(x) at x = 1 is (c2m+1

0 /F2m+1(1))F2m+1(1)/1 =

c2m+1
0 . and the value of the polynomial

←
F2m(x) at x = 1 is (c2m

0 /F2m+1(1))F2m+1(1)/1 =

c2m
0 . �

In particular, we have:

(a)
←
Pn

n(x) = xn and
←
P2m+1

0 (x) =
←
P2m

0 (x) = P2m+1(x)/x.

(b)
←
T n

n(x) = xn and
←
T 2m+1

0 (x) =
←
T 2m

0 (x) = T2m+1(x)/x.

(a)
←
Un

n(x) = 2xn and
←
U2m+1

0 (x) =
←
U2m

0 (x) =U2m+1(x)/x.
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Tables of values

Let Jn
k = 2 j(n−k) where j(0) = j(1) = 0, j(2) = j(3) = 1, j(4) = j(5) = 3, j(6) =

j(7) = 4.

Table of Jn
k

←
Pn

k(x)



























6 x6

5 x5 x5

4 x4 x4 13x6−11x4

3 x3 x3 11x5−9x3 11x5−9x3

2 x2 x2 9x4−7x2 9x4−7x2 143x6−198x4 +63x2

1 x x 7x3−5x 7x3−5x 99x5−126x3 +35x 99x5−126x3 +35x

0 1 1 5x2−3 5x2−3 63x4−70x2 +15 63x4−70x2 +15 429x6−693x4 +315x2−35

0 1 2 3 4 5 6



























Table of
←
T n

k(x)



























6 x6

5 x5 x5

4 x4 x4 12x6−11x4

3 x3 x3 10x5−9x3 10x5−9x3

2 x2 x2 8x4−7x2 8x4−7x2 40x6−60x4 +21x2

1 x x 6x3−5x 6x3−5x 1
3
(80x5−112x3 +35x) 1

3
(80x5−112x3 +35x)

0 1 1 4x2−3 4x2−3 16x4−20x2 +5 16x4−20x2 +5 64x6−112x4 +56x2−7

0 1 2 3 4 5 6



























Table of
←
Un

k(x)



























6 2x6

5 2x5 2x5

4 2x4 2x4 4
3
(14x6−11x4)

3 2x3 2x3 16x5−12x3 16x5−12x3

2 2x2 2x2 4
3
(10x4−7x2) 4

3
(10x4−7x2) 1

5
(336x6−216x4 +63x2)

1 2x 2x 4
3
(8x3−5x) 4

3
(8x3−5x) 48x5−56x3 +14x 48x5−56x3 +14x

0 2 2 8x2−4 8x2−4 32x4−32x2 +6 32x4−32x2 +6 128x6−192x4 +80x2−8

0 1 2 3 4 5 6


























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Determination of the reverse orthogonal polynomials

It is well-known that orthogonal polynomials satisfy a three-term recurrence relation.

We have a similar result for reverse orthogonal polynomials, which plays a key role.

Theorem 3. For any integer n≥ 2 and any integer k with 0≤ k≤ n−2, there are unique

real numbers αn
k and β n

k such that

←
Fn

k(x) = αn
k

←
Fn−2

k (x)+β n
k x
←
Fn−1

k+1(x).

From Theorem 1(c) we see that it suffices to consider the case k ≡ n (mod 2), so we

make that restriction.

We note that the low-order terms of
←
Fn

k(x) and
←
Fn−2

k (x) are of degree k while the low-

order term of x
←
Fn−1

k+1(x) is of degree k+2, and the high-order terms of
←
Fn

k(x) and x
←
Fn−1

k+1(x)

are of degree n while the high-order term of
←
Fn−2

k (x) is of degree n− 2. Hence we must

have

αn
k =

trailing coefficient of
←
Fn

k(x)

trailing coefficient of
←
Fn−2

k (x)
,

β n
k =

leading coefficient of
←
Fn

k(x)

leading coefficient of
←
Fn−1

k+1(x)
.

We also observe that each of the following sets determines the others:

(a) {
←
Fn

k(x)} for all n,k.

(b1) {αn
k } and {β n

k } for all n,k, and {
←
Fn

n(x)} for all n.

(b2) {αn
k } and {β n

k } for all n,k, and {
←
Fn

0(x)} for all n.
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We do some careful but routine computations of the reverse orthogonal polynomials via

the Gram-Schmidt process. We obtain:

Reverse Legendre polynomials:

(a)
←
Pn

n(x) = xn.

(b)
←
Pn

n−2(x) =
1
2
((2n+1)xn− (2n−1)xn−2).

(c)
←
Pn

n−4(x) =
1
8
((2n−1)(2n+1)xn−2(2n−3)(2n−1)xn−2 +(2n−5)(2n−3)xn−4).

(d)
←
Pn

n−6(x) =
1

48
((2n−3)(2n−1)(2n+1)xn−3(2n−5)(2n−3)(2n−1)xn−2

+3(2n−7)(2n−5)(2n−3)xn−4− (2n−9)(2n−7)(2n−5)xn−6).

Reverse Chebyshev polynomials of the first kind:

(a)
←
T n

n(x) = xn.

(b)
←
T n

n−2(x) = 2nxn− (2n−1)xn−2.

(c)
←
T n

n−4(x) =
1
3
(4(n−1)nxn−4(n−1)(2n−3)xn−2 +(2n−5)(2n−3)xn−4).

(d)
←
T n

n−6(x) =
1

15
(8(n−2)(n−1)nxn−12(n−2)(n−1)(2n−5)xn−2

+6(n−2)(2n−7)(2n−5)xn−4− (2n−9)(2n−7)(2n−5)xn−6).

Reverse Chebyshev polynomials of the second kind:

(a)
←
Un

n(x) = 2xn.

(b)
←
Un

n−2(x) =
4
3
(2(n+1)xn− (2n−1)xn−2).

(c)
←
Un

n−4(x) =
2
5
(4n(n+1)xn−4n(2n−3)xn−2 +(2n−5)(2n−3)xn−4).

(d)
←
Un

n−6(x) =
8

105
(8(n−1)n(n+1)xn−12(n−1)n(2n−5)xn−2

+6(n−1)(2n−7)(2n−5)xn−4− (2n−9)(2n−7)(2n−5)xn−6).
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Lemma 4. (a) For any integer n≥ 2 and any integer k with 0≤ k≤ n−2, k≡ n (mod 2)
←
Pn

k(x) = αn
k

←
Pn−2

k (x)+β n
k x
←
Pn−1

k+1(x).

for

αn
k =−n+ k+1

n− k
and β n

k =
2n+1

n− k
.

(b) For any integer n≥ 2 and any integer k with 0≤ k ≤ n−2, k ≡ n (mod 2),
←
T n

k(x) = αn
k

←
T n−2

k (x)+β n
k x
←
T n−1

k+1(x).

for

αn
k =−n+ k+1

n− k−1
and β n

k =
2n

n− k−1
.

(c) For any integer n≥ 2 and any integer k with 0≤ k ≤ n−2, k ≡ n (mod 2)
←
Un

k(x) = αn
k

←
Un−2

k (x)+β n
k x
←
Un−1

k+1(x).

for

αn
k =− (n− k+2)(n+ k+1)

(n− k)(n− k+1)
and β n

k =
2(n− k+2)(n+1)

(n− k)(n− k+1)
.
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For an integer t, we denote the product of m consecutive integers, the largest of which is

t, by Γm(t), and for an odd integer t, we denote the product of m consecutive odd integers,

the largest of which is t, by Πm(t), i.e.,

Γ0(t) = 1 and Γm(t) =
m

∏
r=1

(t− (r−1)) for m > 0,

Π0(t) = 1 and Πm(t) =
m

∏
r=1

(t−2(r−1)) for m > 0.

Theorem 5. (a) For any integer n≥ 0 and any integer k with 0≤ k ≤ n, k ≡ n (mod 2),

let m = (n− k)/2. Then the reverse Legendre polynomial
←
Pn

k(x) is given by

←
Pn

k(x) =
1

2m

1

m!

(

m

∑
p=0

(−1)p

(

m

p

)

Πm(2n−2p+1)xn−2p

)

(b) For any integer n≥ 0 and any integer k with 0≤ k≤ n, k≡ n (mod 2), let m= (n−k)/2.

Then the reverse Chebyshev polynomial of the first kind
←
T n

k(x) is given by

←
T n

k(x) =
1

Πm(2m−1)

(

m

∑
p=0

(−1)p2m−p

(

m

p

)

Γm−p(n− p)Πp(2n−2m+1)xn−2p

)

(c) For any integer n≥ 2 and any integer k with 0≤ k≤ n, k≡ n (mod 2), let m= (n−k)/2.

Then the reverse Chebyshev polynomial of the second kind
←
Un

k(x) is given by

←
Un

k(x) =
2(m+1)

Πm+1(2m+1)

(

m

∑
p=0

(−1)p2m−p

(

m

p

)

Γm−p(n+1− p)Πp(2n−2m+1)xn−2p

)

Remark 6. The coefficients of
←
Pn

k(x),
←
T n

k(x), and
←
Un

k(x) are rational numbers.

We conjectured that the coefficients of
←
Pn

k(x) have denominators a power of 2 and this

was originally proved by T. Amdeberhan and V. Moll. But we can easily see that this is

true as it is an elementary fact that for any integer m ≥ 0 and any integer t, 2mΠm(t) is

divisible by m!.

On the other hand, the coefficients of
←
T n

k(x) and
←
Un

k(x) are not always integers but

always have denominators odd integers.


