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Today we will…

• Provide background on the Four Color Theorem and Kempe 
chains

• Introduce the various Kempe chain operations of Irving 
Kittell

• Introduce the Rotation Method for coloring cubic maps

• Introduce the Errera Map and its significance

• Explain how the impasse colorings of the Errera Map can be 
determined

• Explore the efficacy of a coloring algorithm based on the 
Rotation Method  
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Background: The Four Color Theorem

• A plane graph is a graph consisting of vertices and edges that has been 
drawn in the plane so that no two edges cross. 

• In 1852, Frederick and Francis Guthrie noticed that the regions of many 
plane graphs can be colored using only 4 colors so that no two regions 
sharing a boundary line have the same color ([8]).

• This is called a proper 4 region coloring, or simply a 4 coloring.

• The Four Color Conjecture: Every plane graph has a proper 4 region 
coloring.
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Background: The Four Color Theorem

• While quite easy to state, the Four Color Conjecture remained unproven 
for the next century.

• In 1976, Wolfgang Haken and Kenneth Appel finally produced a proof of 
the Four Color Theorem ([1]). 

• Unfortunately, this proof is heavily based on computers, and even the 
parts that could theoretically be checked by hand have not been verified 
by human readers.

• This proof has been simplified by Neil Robertson, Daniel Sanders, Paul 
Seymour, and Robin Thomas, but the proof still requires the use of 
computers for verification ([7]).



Question: Can the Four Color 
Theorem be proven without 

using computers?
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Background: Kempe’s Proof

• In 1879, Alfred Kempe thought he could use these chains to easily prove the 
Four Color Theorem ([4]).

• Sketch:

• Restrict our attention to cubic maps, or 2-connected plane graphs where each vertex 
has three neighbors.

• Consider a counterexample with minimum number of regions

• Color all but one region, with the uncolored region having at most 5 neighbors

• Use various methods (mostly based on Kempe chains) to obtain a coloring of the final 
region.
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Historical Note

• The original counterexample to Kempe’s proof is due to Percy John 
Heawood in 1890 ([3]). 

• The example on the previous slide is due to Alfred Errera in 1921 ([2]). This 
map has additional special properties, and will be the focus of our study 
here.
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Irving Kittell’s Contribution

• In his 1935 article “A Group of Operations on a Partially Colored Map,” Irving 
Kittell studied a variety of different possible Kempe chain color exchanges 
([5]).
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Definitions

• We call the regions touching the uncolored 
exterior region boundary regions.

• We assume there are both 𝐴𝐶 and 𝐴𝐷 Kempe 
chains between the appropriate boundary 
regions.

• The boundary region colored 𝐴 is called the 
vertex.

• We call the 𝐴𝐶 and 𝐴𝐷 Kempe chains the left-
hand and right-hand circuit.

• The 𝐵𝐷-Kempe chain starting at the 𝐵 region 
counterclockwise to the vertex is called the left-
hand chain, and the 𝐵𝐶 chain starting at the other 
𝐵 region the right-hand chain. 

• The 𝐶𝐷-Kempe chain is called the end tangent 
chain.
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Irving Kittell’s Contribution

• Kittell also defined 3 other operations, as well as an identity operation.

• We will say that a partial coloring 𝑐 is at impasse if 𝑐, 𝛼 𝑐 , and 𝛽(𝑐) each 
have both a left-hand and right-hand circuit.

• Suppose that a map 𝑀 is a minimal counterexample to the Four Color 
Theorem. Then any combination of operations on a partial coloring 𝑐 must 
result in an impasse coloring.

• Therefore, these operations would generate a finite group closed under composition.

• Kittell calls this an impasse group.

• This led to a new question:



Question: Can it be shown that 
the existence of an impasse 

group closed under all of 
Kittell’s operations results in a 

contradiction?
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A Brief Description of the Rotation Method

• First, we examine how far we can get only using the operation 𝛼.

• The Rotation Method:

• If there is a left-hand circuit, apply 𝛼.

• If there is not a left-hand circuit, perform a color exchange using the colors 𝐴 and 𝐶 
starting at the vertex.

• There are possible variations on the Rotation Method, but we will use this as 
our definition. (See [9, 10, 11] for more on the Rotation Method.)
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Question: Can this resolve 
any partial coloring of any 
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Significance of the Errera Map

• There exists at least one partial coloring 𝑐 of the Errera map such that the 
repeated application of 𝛼 does not resolve impasse.

• After 20 applications of 𝛼, we return to the original coloring.

• In other words, 𝛼 generates a group of order 20.

• After just 4 applications of 𝛼, we obtain a rotation of the original coloring.
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Why Study the Errera Map?

• We created an algorithm that utilized the rotation method to color maps 
(using ideas from [6]).

• In hundreds of thousands of tests, the only graphs which could not be 
colored directly were the Errera map, and what we dubbed the “Errera Map 
with Holes.”

• An Errera map with Holes is a map with a set of cycles 𝐶1, 𝐶2, … , 𝐶𝑘  where contracting 
each cycle 𝐶𝑖  and its interior vertices/edges to a single vertex 𝑣𝑖  results in the Errera 
map.

• In the dual graph, this is a graph containing the Errera map as an induced subgraph.

• In the next slide is an example of an Errera Map with Holes, where 
𝛼 = 60. 



An Errera Map with 
Holes
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Why Study the Errera Map?

• Idea: If we can modify our algorithm to handle these cases, perhaps this will 
allow it to color all graphs.

• To this end, we would like to study exactly which colorings of the Errera map 
lead to these problems.



Question: How many 
colorings of the Errera map 
result in this cyclic pattern?
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Answer: 4

• Or 480, depending on how you count.

• In fact, the 4 colorings are the original coloring 𝑐 of the Errera map, 
𝛼 𝑐 , 𝛼2 𝑐 , and 𝛼3(𝑐).

• How  can we determine this?

• We proceed by (a reasonable number of) cases.

• We will do one such case here.
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• We can obtain 119 other colorings by 
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• Suppose this is an impasse 
coloring. Then there must be a left- 
and right-hand circuit.

• Thus, the regions 1 and 2 must be 
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•

•

•

•

𝐵

𝐵

𝑅

𝐺

𝑌

4

5

6
11

10

9
8

7

𝐺

𝑌

𝑅



Determining the Colorings

• The next region of our circuit must be 7 or 
8. Suppose it were 7.

•

•

•

•

𝐵

𝐵

𝑅

𝐺

𝑌

4

5

6
11

10

9
8

𝐺

𝑌

𝑅 𝑌



Determining the Colorings

• The next region of our circuit must be 7 or 
8. Suppose it were 7.

• Then, the next 𝑅 region must be 4,6,8, or 
10.

•

•

•

𝐵

𝐵

𝑅

𝐺

𝑌

4

5

6
11

10

9
8

𝐺

𝑌

𝑅 𝑌



Determining the Colorings

• The next region of our circuit must be 7 or 
8. Suppose it were 7.

• Then, the next 𝑅 region must be 4,6,8, or 
10.

• However, 4 and 8 are already adjacent to a 
𝑅. We also know that 5 must be colored 𝑅, 
which means 6 cannot be colored 𝑅.

•

•

𝐵

𝐵

𝑅

𝐺

𝑌

4

5

6
11

10

9
8

𝐺

𝑌

𝑅 𝑌



Determining the Colorings

• The next region of our circuit must be 7 or 
8. Suppose it were 7.

• Then, the next 𝑅 region must be 4,6,8, or 
10.

• However, 4 and 8 are already adjacent to a 
𝑅. We also know that 5 must be colored 𝑅, 
which means 6 cannot be colored 𝑅.

• In addition, 10 cannot be colored 𝑅, as in 
the 𝑅𝑌 circuit either 9 or 11 must be 
colored 𝑅.

•

𝐵

𝐵

𝑅

𝐺

𝑌

4

5

6
11

10

9
8

𝐺

𝑌

𝑅 𝑌



Determining the Colorings

• The next region of our circuit must be 7 or 
8. Suppose it were 7.

• Then, the next 𝑅 region must be 4,6,8, or 
10.

• However, 4 and 8 are already adjacent to a 
𝑅. We also know that 5 must be colored 𝑅, 
which means 6 cannot be colored 𝑅.

• In addition, 10 cannot be colored 𝑅, as in 
the 𝑅𝑌 circuit either 9 or 11 must be 
colored 𝑅.

• Therefore, 7 cannot be 𝑌. Thus, region 8 
must be 𝑌.
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Determining the Colorings
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Determining the Colorings

• Now we will form the 𝑅𝐺 circuit. It will 
help to color region 5 𝑅 now.
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Determining the Colorings

• Now we will form the 𝑅𝐺 circuit. It will 
help to color region 5 𝑅 now.

• The next region of the 𝑅𝐺 circuit must 
be 4 or 7. Suppose it were 7.

• Regions 4,6, and 10 are already 
adjacent to 𝑅 regions, so we cannot 
continue the 𝑅𝐺 circuit.
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Determining the Colorings

• Now we will form the 𝑅𝐺 circuit. It will 
help to color region 5 𝑅 now.

• The next region of the 𝑅𝐺 circuit must 
be 4 or 7. Suppose it were 7.

• Regions 4,6, and 10 are already 
adjacent to 𝑅 regions, so we cannot 
continue the 𝑅𝐺 circuit.

• Therefore, Region 4 is 𝐺.
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Determining the Colorings

• Now our 𝑅𝐺 circuit is completed!
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Determining the Colorings

• Now our 𝑅𝐺 circuit is completed!

• We note that regions 7 and 11 must be 
𝐵.

• This then shows that 6 and 10 must be 
𝑌 and 𝐺 respectively.

• We have determined colors for all 
interior regions of the map!

𝐵

𝐵

𝑅

𝐺

𝑌
𝐺

𝑌

𝑅

𝑌
𝑅

𝑅

𝐺

𝐵
𝐵

𝑌

𝐺



What cases did we skip?

•

•

•

•

•



What cases did we skip?

• We assumed that regions 1 and 2 were 𝑌 and 𝐺 respectively. We would need 
to consider the other way around.

•

•

•

•



What cases did we skip?

• We assumed that regions 1 and 2 were 𝑌 and 𝐺 respectively. We would need 
to consider the other way around.

•  We assumed that the third region of the 𝑅𝑌 circuit was region 3 instead of 
region 5. We would need to consider that case as well.

•

•

•



What cases did we skip?

• We assumed that regions 1 and 2 were 𝑌 and 𝐺 respectively. We would need 
to consider the other way around.

•  We assumed that the third region of the 𝑅𝑌 circuit was region 3 instead of 
region 5. We would need to consider that case as well.

• This proceeds directly to another coloring without splitting into any other subcases.

•

•



What cases did we skip?

• We assumed that regions 1 and 2 were 𝑌 and 𝐺 respectively. We would need 
to consider the other way around.

•  We assumed that the third region of the 𝑅𝑌 circuit was region 3 instead of 
region 5. We would need to consider that case as well.

• This proceeds directly to another coloring without splitting into any other subcases.

• Otherwise, we completely explored all cases where the 𝑅𝑌 chain starts with 
the boundary region, then region 1, then region 3.

•



What cases did we skip?

• We assumed that regions 1 and 2 were 𝑌 and 𝐺 respectively. We would need 
to consider the other way around.

•  We assumed that the third region of the 𝑅𝑌 circuit was region 3 instead of 
region 5. We would need to consider that case as well.

• This proceeds directly to another coloring without splitting into any other subcases.

• Otherwise, we completely explored all cases where the 𝑅𝑌 chain starts with 
the boundary region, then region 1, then region 3.

• After examining all cases, we obtain 4 colorings, corresponding to the 
original coloring 𝑐 of the Errera map and the colorings 𝛼 𝑐 , 𝛼2 𝑐 , and 
𝛼3 𝑐 .
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Resolving Impasse in the Errera Map

• Since we have completely determined the impasse colorings of the Errera 
Map, it suffices to show how to resolve each of these.

• Result: The impasse in colorings 𝑐, 𝛼2 𝑐  can be resolved by 𝜖. The impasse 
in colorings 𝛼 𝑐 , 𝛼3 𝑐  can be resolved by 𝜖𝛼.

• Result: Impasse in an Errera Map with Holes can be resolved by resolving 
the impasse in the underlying Errera Map subgraph.

• Therefore, in each of the cases for which 𝛼 fails to resolve impasse, 𝜖 or 𝜖𝛼 
resolves impasse.
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Revising our Algorithm
• We now modify our Rotation Algorithm as follows:

• Choose a sufficiently large number 𝑁 of rotations to handle cases where 𝛼 resolves 
impasse.

• For the first 𝑁 iterations…

• If there is a left-hand circuit, apply 𝛼.

• If there is not a left-hand circuit, perform a color exchange using the colors 𝐴 and 𝐶 starting 
at the vertex.

• If we exceed 𝑁 iterations, or if we detect that we have returned to our original coloring,

• Handle Errera Map cases by trying 𝜖, then trying 𝜖𝛼.
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Efficacy

• Running over 30 million of simulations, this has effectively colored graphs 
ranging a large variety of numbers of regions.

• In fact, up until last week, this had handled all graphs. But recently, we 
encountered the graph on the following slide.
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Analysis on Graph

• For the map 𝑀 on the previous slide and the partial coloring 𝑐, 𝛼 = 240.

• The dual contains the Errera Map minus an edge as a subgraph.

• 𝜖 does resolve the impasse; the coloring 𝜖 𝑐  has no right-hand circuit.

• Both 𝜖 𝑐  and 𝛼𝜖 𝑐  do have left-hand circuits, so the algorithm does not detect that 
the impasse has been resolved

• This is an implementation problem as opposed to a conceptual problem, and can easily 
be addressed.

• The mirror image of this graph would be colored by the algorithm as is; 
therefore, it is possible that the mirror image has been encountered 
previously and gone unnoticed.
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Revised Thoughts on Efficacy

• For the overwhelming majority of graphs tested, repeated application of 𝛼 
resolves impasse.

• For all tested cases where repeated application of 𝛼 doesn’t resolve 
impasse, 𝜖𝛼𝑛 resolves impasse for some 𝑛.

• This was initially motivated by the conjecture that all such graphs contain the Errera 
Map, although we now know this is not exactly the case.

• This leads to our final question:



For any impasse coloring 𝑐 
of a map 𝑀, is there some 𝑛 

such that either 𝛼𝑛 𝑐  or 
𝜖𝛼𝑛 𝑐  is not at impasse? 



Similarly, can it be shown 
that the operations 𝛼 and 𝜖 
do not generate a group for 

any partial coloring?
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