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Today we will...

Provide background on the Four Color Theorem and Kempe
chains

Introduce the various Kempe chain operations of Irving
Kittell

Introduce the Rotation Method for coloring cubic maps
Introduce the Errera Map and its significance

Explain how the impasse colorings of the Errera Map can be
determined

Explore the efficacy of a coloring algorithm based on the
Rotation Method
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® In 1852, Frederick and Francis Guthrie noticed that the regions of many

plane graphs can be colored using only 4 colors so that no two regions
sharing a boundary line have the same color ([8]).

® Thisis called a proper 4 region coloring, or simply a 4 coloring.

® The Four Color Conjecture: Every plane graph has a proper 4 region
coloring.
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Background: The Four Color Theorem

® While quite easy to state, the Four Color Conjecture remained unproven
for the next century.

® In 1976, Wolfgang Haken and Kenneth Appel finally produced a proof of
the Four Color Theorem ([1]).

® Unfortunately, this proof is heavily based on computers, and even the
parts that could theoretically be checked by hand have not been verified
by human readers.

® This proof has been simplified by Neil Robertson, Daniel Sanders, Paul
Seymour, and Robin Thomas, but the proof still requires the use of
computers for verification ([7]).



Question: Can the Four Color
Theorem be proven without
using computers?
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Background: Kempe’s Proof

® In 1879, Alfred Kempe thought he could use these chains to easily prove the
Four Color Theorem ([4]).

® Sketch:

® Restrict our attention to cubic maps, or 2-connected plane graphs where each vertex
has three neighbors.

® Consider a counterexample with minimum number of regions

® Color all but one region, with the uncolored region having at most 5 neighbors

® Use various methods (mostly based on Kempe chains) to obtain a coloring of the final
region.
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Historical Note

® The original counterexample to Kempe's proof is due to Percy John
Heawood in 1890 ([3]).

® The example on the previous slide is due to Alfred Errera in 1921 ([2]). This

map has additional special properties, and will be the focus of our study
here.
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Irving Kittell's Contribution

® In his 1935 article “"A Group of Operations on a Partially Colored Map,” Irving
Kittell studied a variety of different possible Kempe chain color exchanges

([5)).
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Definitions

We call the regions touching the uncolored
exterior region boundary regions.

We assume there are both AC and AD Kempe
chains between the appropriate boundary
regions.

The boundary region colored A is called the
vertex.

We call the AC and AD Kempe chains the left-
hand and right-hand circuit.

The BD-Kempe chain starting at the B region
counterclockwise to the vertex is called the left-
hand chain, and the BC chain starting at the other
B region the right-hand chain.

The CD-Kempe chain is called the end tangent
chain.
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Irving Kittell's Contribution

Kittell also defined 3 other operations, as well as an identity operation.

We will say that a partial coloring c is at impasse if ¢, a(c), and B(c) each
have both a left-hand and right-hand circuit.

Suppose that a map M is a minimal counterexample to the Four Color
Theorem. Then any combination of operations on a partial coloring ¢ must
result in an impasse coloring.

® Therefore, these operations would generate a finite group closed under composition.

¢ Kittell calls this an impasse group.

This led to a new question:



Question: Can it be shown that
the existence of an impasse
group closed under all of
Kittell's operations results in a
contradiction?
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A Brief Description of the Rotation Method

® First, we examine how far we can get only using the operation «.

® The Rotation Method:

® If there is a left-hand circuit, apply «.

® If there is not a left-hand circuit, perform a color exchange using the colors A and C
starting at the vertex.

® There are possible variations on the Rotation Method, but we will use this as
our definition. (See [9, 10, 11] for more on the Rotation Method.)








































Question: Can this resolve
any partial coloring of any
map?
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Significance of the Errera Map

® There exists at least one partial coloring ¢ of the Errera map such that the
repeated application of a does not resolve impasse.

® After 20 applications of a, we return to the original coloring.

® Inother words, a generates a group of order 20.

® After just 4 applications of a, we obtain a rotation of the original coloring.
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Why Study the Errera Map?

® We created an algorithm that utilized the rotation method to color maps
(using ideas from [6]).

® In hundreds of thousands of tests, the only graphs which could not be

colored directly were the Errera map, and what we dubbed the “Errera Map
with Holes.”

® An Errera map with Holes is a map with a set of cycles Cy, Cs, ..., C, where contracting

each cycle C; and its interior vertices/edges to a single vertex v; results in the Errera
map.

® Inthe dual graph, this is a graph containing the Errera map as an induced subgraph.

® In the next slide is an example of an Errera Map with Holes, where
[{a}| = 60.
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Holes




Why Study the Errera Map?




Why Study the Errera Map?

® ldea: If we can modify our algorithm to handle these cases, perhaps this will
allow it to color all graphs.




Why Study the Errera Map?

® ldea: If we can modify our algorithm to handle these cases, perhaps this will
allow it to color all graphs.

® To this end, we would like to study exactly which colorings of the Errera map
lead to these problems.
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Answer: 4

® Or 480, depending on how you count.

® Infact, the 4 colorings are the original coloring ¢ of the Errera map,
a(c), a*(c),and a3(c).

® How can we determine this?

® We proceed by (a reasonable number of) cases.

® We will do one such case here.
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Determining the Colorings

The next region of our circuit must be 7 or
8. Suppose it were 7.

Then, the next R region must be 4,6,8, or
10.

However, 4 and 8 are already adjacentto a
R.We also know that 5 must be colored R,
which means 6 cannot be colored R.

In addition, 10 cannot be colored R, as in
the RY circuit either 9 or 11 must be
colored R.

Therefore, 7 cannot be Y. Thus, region 8
must beY.
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Determining the Colorings

Now we will form the RG circuit. It will
help to color region 5 R now.

The next region of the RG circuit must
be 4 or 7. Suppose it were 7.

Regions 4,6, and 10 are already
adjacent to R regions, so we cannot
continue the RG circuit.

Therefore, Region 4 is G.
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Determining the Colorings

Now our RG circuit is completed!

We note that regions 7 and 11 must be
B.

This then shows that 6 and 10 must be
Y and G respectively.

We have determined colors for all
interior regions of the map!
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What cases did we skip?

We assumed that regions 1 and 2 were Y and G respectively. We would need
to consider the other way around.

We assumed that the third region of the RY circuit was region 3 instead of
region 5. We would need to consider that case as well.

® This proceeds directly to another coloring without splitting into any other subcases.

Otherwise, we completely explored all cases where the RY chain starts with
the boundary region, then region 1, then region 3.

After examining all cases, we obtain 4 colorings, corresponding to the
original coloring ¢ of the Errera map and the colorings a(c), a*(c), and

a3 (o).
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Resolving Impasse in the Errera Map

® Since we have completely determined the impasse colorings of the Errera
Map, it suffices to show how to resolve each of these.

® Result: The impasse in colorings ¢, a“(c) can be resolved by €. The impasse
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Resolving Impasse in the Errera Map

Since we have completely determined the impasse colorings of the Errera
Map, it suffices to show how to resolve each of these.

Result: The impasse in colorings ¢, a?(c) can be resolved by €. The impasse
in colorings a(c), @>(c) can be resolved by ea.

Result: Impasse in an Errera Map with Holes can be resolved by resolving
the impasse in the underlying Errera Map subgraph.

Therefore, in each of the cases for which «a fails to resolve impasse, € or ea
resolves impasse.
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Revising our Algorithm

® We now modify our Rotation Algorithm as follows:

® Choose a sufficiently large number N of rotations to handle cases where a resolves
Impasse.

® Forthe first N iterations...

® Ifthereis a left-hand circuit, apply a.

® If there is not a left-hand circuit, perform a color exchange using the colors A and C starting
at the vertex.

® If we exceed N iterations, or if we detect that we have returned to our original coloring,

® Handle Errera Map cases by trying €, then trying ea.
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Efficacy

® Running over 30 million of simulations, this has effectively colored graphs
ranging a large variety of numbers of regions.

® Infact, up until last week, this had handled all graphs. But recently, we
encountered the graph on the following slide.
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Analysis on Graph

For the map M on the previous slide and the partial coloring c, |[{a)| = 240.
The dual contains the Errera Map minus an edge as a subgraph.

€ does resolve the impasse; the coloring e(c) has no right-hand circuit.

® Both €(c) and ae(c) do have left-hand circuits, so the algorithm does not detect that
the impasse has been resolved

® Thisis an implementation problem as opposed to a conceptual problem, and can easily
be addressed.

The mirror image of this graph would be colored by the algorithm as is;
therefore, it is possible that the mirror image has been encountered
previously and gone unnoticed.
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Revised Thoughts on Efficacy

® For the overwhelming majority of graphs tested, repeated application of a
resolves impasse.

® For all tested cases where repeated application of a« doesn’t resolve
impasse, ea’ resolves impasse for some n.

® This was initially motivated by the conjecture that all such graphs contain the Errera
Map, although we now know this is not exactly the case.

® This leads to our final question:




For any impasse coloring ¢
of amap M, is there somen
such that either a™(c) or
ea™(c) is not at impasse?



Similarly, can it be shown
that the operations a and €

do not generate a group for
any partial coloring?
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