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Motivation

David Eisenbud, Commutative Algebra with a View Toward
Algebraic Geometry, p. 57:

“A local ring is a ring with just one maximal ideal. Every since
Krull’s paper (1938) local rings have occupied a central position in
commutative algebra. The technique of localization reduces many
problems in commutative algebra to problems about local rings.
This often turns out to be extremely useful.

Most of the problems with which commutative algebra has been
successful are those that can be reduced to the local case.”

The challenge is to find a good analog for noncommutative rings.
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Background from commutative algebra

If R is a commutative Noetherian ring an ideal P ⊆ R is by
definition a prime ideal if its complement C (P) is a multiplicatively
closed set. We can use fractions a

c , with a ∈ R, c ∈ C (P), to
construct a ring RP and ring homomorphism λ : R → RP which
inverts the elements of C (P). We have the following properties.

(i) The ideal PRP is the unique maximal ideal of RP .

(ii) R/PRP is isomorphic to the field of quotients Q(R/P) of R/P.

(iii) For r ∈ R, λ(r) = 0 iff cr = 0 for some c ∈ C (P).

(iv) The functor RP ⊗R − : R−Mod→ RP−Mod takes short exact
sequences to short exact sequences.
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Preview of the noncommutative definition

λ : R → RP can be defined as the ring homomorphism universal
with respect to the property that if c ∈ C (P) then λ(c) is
invertible in RP .

That is, if φ : R → T inverts C (P), then there exists a unique ring
homomorphism φ′ such that the following diagram commutes.

R
λ-

@
@
@R

φ

RP
······
?
φ′

T
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The noncommutative case

In a noncommutative ring R an ideal P is called prime if AB ⊆ P
implies A ⊆ P or B ⊆ P, for all ideals A,B of R.

Example 1. Let R =

[
Z Z
Z Z

]
and P =

[
2Z 2Z
2Z 2Z

]
. Then P is

prime since the ideals of R are in one-to-one correspondence with
the ideals of the Z.

Note that R/P ∼=
[
Z/2Z Z/2Z
Z/2Z Z/2Z

]
, and that this factor ring has

divisors of zero.

The logical candidate for a localization of R at P is[
Z(2) Z(2)

Z(2) Z(2)

]
, which can be constructed by inverting all scalar

matrices with an odd entry.
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The noncommutative analog of a field of quotients

If R is a subring of Q, then R is a left order in Q if
(i) each c ∈ R that is not a divisor of zero has an inverse in Q, and
(ii) each q ∈ Q can be written in the form c−1a, for a, c ∈ R,
where c is regular (not a divisor of zero).

To put the product ac−1 into standard form we need to be able to
find a1 and c1 with ac−1 = c−1

1 a1, where c1 is regular. The
existence of a1, c1 with c1a = a1c is the left Ore condition. Then
c−1a · d−1b can be put into standard form by finding a1 and d1

with d1a = a1d , so that ad−1 = d−1
1 a1.

Comment: The Ore condition fails in many (if not most) cases
when trying to construct a localization at a prime ideal, so it is a
major stumbling block for noncommutative localization. One
answer is to focus on the categorical properties of RP ⊗−, as in
Gabriel’s thesis.
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Analog of a quotient field: Goldie’s theorem

Goldie’s theorem (1958) shows that R is a left order in a full ring
of n × n matrices over a skew field if and only if R is a prime ring
with ACC on left annihilators and finite uniform dimension. (These
finiteness conditions always hold when R is left Noetherian.) This
ring of quotients is called the classical ring of left quotients of R
and is denoted by Qcl(R).

We are now ready to look at Cohn’s approach to noncommutative
localization. We focus on prime ideals of R for which Qcl(R/P)
exists. We would like to invert C (P), which we must now redefine
as the set of elements that are regular modulo P (not as the
complement of P). Equivalently, these are the elements inverted
by the canonical homomorphism R → R/P → Qcl(R/P).

In Example 1, where P is the set of 2× 2 matrices with even
entries, C (P) is the set of matrices whose determinant is odd.
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Ore localization

If P is a prime Goldie ideal for which C (P) satisfies the left Ore
condition and is left reversible (if ac = 0 for c ∈ C (P), then
c ′a = 0 for some c ′ ∈ C (P)) then the construction of a
localization RP goes through much as in the commutative case,
and all four of the properties listed above still hold.

Example 2.

R =

[
Z 0
Z Z

]
, P1 =

[
2Z 0
Z Z

]
, P2 =

[
Z 0
Z 2Z

]
.

Then R/Pi
∼= Z/2Z and so Qcl(R/Pi ) = R/Pi is a field, making

Pi as nice a prime Goldie ideal as possible. But P1 satisfies the left
Ore condition, while P2 does not.
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Checking the Ore condition

The ideal P1 satisfies the left Ore condition:

given a =

[
a11 0
a21 a22

]
∈ R and c =

[
c11 0
c21 c22

]
∈ C (P1) we

need to solve c ′a = a′c with c ′ ∈ C (P).[
c11 0
0 0

] [
a11 0
a21 a22

]
=

[
a11 0
0 0

] [
c11 0
c21 c22

]
.

The ideal P2 does not satisfy the left Ore condition:

given

[
0 0
1 0

]
∈ R and

[
0 0
0 1

]
∈ C (P2) the equation[

c11 0
c21 c22

] [
0 0
1 0

]
=

[
a11 0
a21 a22

] [
0 0
0 1

]
has no solution with c22 odd.
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Universal localization

We now turn to properties (i) and (ii) of the commutative case:
(i). λ : R → RP is universal with respect to the property that if
c ∈ C (P) then λ(c) has an inverse in RP .
(ii). The ideal PRP is the unique maximal ideal of R, and
RP/PRP is isomorphic to Q(R/P).

A ring satisfying (i) can be defined, but it may be the zero ring.

A new approach inverting matrices rather than elements was
introduced by Cohn in Free Rings and Their Relations (1971)
and Inversive localization in Noetherian rings, Commun. Pure
Appl. Math. 26 (1973), 679-691.

It’s useful to generalize to a semiprime ideal S for which Qcl(R/S)
exists and is semisimple Artinian, i.e. for which R/S is a semiprime
left Goldie ring. In this case we say that S is a semiprime Goldie
ideal.
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Definition of the universal localization

Let S be a semiprime Goldie ideal. Then R → R/S → Qcl(R/S)
inverts all matrices regular modulo S because
Qcl(Mn(R/S)) ∼= Mn(Qcl(R/S)). Let Γ(S) = ∪∞n=1Γn(S) be the
set of all square matrices regular over R/S .

Definition (Cohn, 1973, Noetherian case)

The universal localization RΓ(S) of R at a semiprime Goldie ideal S
is the ring universal with respect to inverting all matrices in Γ(S).

That is, if φ : R → T inverts all matrices in Γ(S), then there exists
a unique φ′ such that the following diagram commutes.

R
λ-

@
@
@R

φ

RΓ(S)
······
?
φ′

T
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Elementary properties of the universal localization

Note: If S is left localizable, then RΓ(S) coincides with the Ore
localization RS defined via elements.

Theorem

Let S be a semiprime Goldie ideal of R.

(a) (Cohn, 1971) The universal localization of R at S exists.

(b) (Cohn, 1971) The canonical mapping λ : R → RΓ(S) is an
epimorphism in the category of rings.

(c) (1981) The ring RΓ(S) is flat as a right module over R if and
only if S is a left localizable ideal.
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Cohn’s construction

Cohn’s construction showing that RΓ(S) exists:

For each n and each n × n matrix [cij ] in Γ(S),

take a set of n2 symbols [dij ],

and take a ring presentation of RΓ(S) consisting of all of the
elements of R, as well as all of the elements dij as generators;

as defining relations take all of the relations holding in R,

together with all of the relations [cij ][dij ] = I and [dij ][cij ] = I
which define all of the inverses of the matrices in Γ(S).

Theorem (Cohn, 1971)

Each element of RΓ(S) is an entry in a matrix of the form
(λ(C ))−1, for some C ∈ Γ(S), where λ : R → RΓ(S).
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Another characterization of RΓ(S)

Theorem

Let S be a semiprime Goldie ideal of R.
(a) (Cohn, 1973) RΓ(S) modulo its Jacobson radical is naturally
isomorphic to Qcl(R/S).
(b) (1981) RΓ(S) is universal with respect to the property in (a). In
fact, λ : R → RΓ(S) is characterized by this property.

Theorem (1981)

Let R be left Noetherian, let N be the prime radical of R, and let
K = ker(λ), for λ : R → RΓ(N).
(a) The kernel K is the intersection of all ideals I ⊆ N such that
C (N) ⊆ C (I ).
(b) The ring R/K is a left order in a left Artinian ring, and RΓ(N)

is naturally isomorphic to Qcl(R/K ).
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Symbolic powers of S

Definition

Let S be a semiprime Goldie ideal of R, with λ : R → RΓ(S). The

nth symbolic power of S is S (n) = λ−1(RΓ(S)λ(Sn)RΓ(S)).

Theorem (1984)

If R is left Noetherian, then the following conditions hold for the
symbolic powers of the semiprime ideal S.

(a) S (n) is the intersection of all ideals I such that Sn ⊆ I ⊆ S and
C (S) ⊆ C (I ).

(b) C (S) is a left Ore set modulo S (n).

(c) RΓ(S)λ(Sn)RΓ(S) = (J(RΓ(S))n, for all n > 0.

(d) R/S (n) is an order in the left Artinian ring RΓ(S)/(J(RΓ(S)))n.
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The connection with Goldie’s localization

In two papers in 1967 and 1968, Goldie defined a localization at a
prime ideal P of a Noetherian ring R by first factoring out the
intersection ∩∞n=1P

(n) of the symbolic powers. He then took the
inverse limit of the Artinian quotient rings Qcl(R/P

(n)), and finally
defined an appropriate subring of this inverse limit.

Theorem (1984)

Let P be a prime ideal of the Noetherian ring R. Then Goldie’s
localization of R at P is isomorphic to RΓ(P)/

⋂∞
n=1 J

n, where J is
the Jacobson radical of RΓ(P).
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Some information about the kernel

Theorem (1976)

If RK ⊆ S is finitely generated, with K 2 = K, then K ⊆ ker(λ).

Proof.

Let K =
∑n

i=1 Rxi , for x1, . . . , xn ∈ R. Since K = K 2, we have
K =

∑n
i=1 Kxi . For x = (x1, . . . , xn) we have xt = Axt , where the

n×n matrix A has entries in K ⊆ S . Thus (In − A)xt = 0t . But
In − A is invertible modulo S , so it certainly belongs to Γ(S).
Therefore the entries of x must belong to ker(λ), and so
K ⊆ ker(λ).

Corollary

RΓ(P) can be determined for a prime ideal P of an hereditary
Noetherian prime ring, since in HNP rings each prime ideal is
either localizable or idempotent.

John A. Beachy Universal localization



Example 2 again

Example 2: R =

[
Z 0
Z Z

]
, P2 =

[
Z 0
Z 2Z

]
, K =

[
Z 0
Z 0

]
.

Then K 2 = K , so K ⊆ kerλ, for λ : R → RΓ(P2). It follows easily
that K = kerλ and RΓ(P2) is isomorphic to Z(2).

An alternate approach: Recalling that P1 =

[
2Z 0
Z Z

]
, we can

invert the scalar matrices in C (P1 ∩ P2) to obtain RP1∩P2

=

[
Z(2) 0
Z(2) Z(2)

]
with maximal ideal P̂2 =

[
Z(2) 0
Z(2) 2Z(2)

]
.

Factoring out ∩∞i=nP̂2
n

yields RΓ(P2)
∼= Z(2).

This illustrates a two-step approach: use the Ore localization at a
suitable semiprime ideal, followed by its universal localization,
which in this case is just a factor ring.
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Missing chain conditions on RΓ(S)

Example 3. If P3 =

[
Z 0
Z 3Z

]
, then RΓ(P1∩P3) =

[
Z(2) 0
Q Z(3)

]
.

This ring is no longer Noetherian. Bill Blair and I had to work
much harder to produce such an example for a prime ideal.

Recall that in a ring finitely generated as a module over its center,
the clique of a prime ideal P is the set of prime ideals with the
same intersection down to the center of the ring.

Theorem (2016, with Christine Leroux)

If R is finitely generated as a module over its Noetherian center,
and P is a prime ideal that does not contain the intersection of
symbolic powers of any other prime ideal in the clique of P, then
RΓ(P) is the homomorphic image of the Ore localization at the
clique of P, and therefore it is Noetherian.
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Another construction of the universal localization

Let S be a semiprime Goldie ideal of R. Each element in the
universal localization RΓ(S) has the form eiλ(C )−1etj for unit
vectors ei , ej ∈ Rn and a matrix C ∈ Γn(S).

Instead of modeling elements of the form c−1a where c ∈ C (S),
via ordered pairs (c, a), we model elements of the form
λ(a)λ(C )−1(λ(b))t where C ∈ Γn(S) and a, b ∈ Rn.

Let X be a left R-module. To construct a module of quotients,
consider ordered triples (a,C , x t) where a ∈ Rn, C ∈ Γn(S), and
x ∈ X n, for all positive integers n.

If C ,U,V are matrices that are already invertible, then
aC−1x t = aU(VCU)−1Vx t . Consequently we say that
(aU,VCU,Vx t) ≡ (a,C , x t) if U,V are invertible matrices.
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Addition of congruence classes

Model for addition: Suppose C ,D are already invertible.

[a b]
[
C 0
0 D

]−1 [
x t

y t

]
=

[a b]
[
C−1 0

0 D−1

] [
x t

y t

]
=

[aC−1 bD−1]
[

x t

y t

]
= aC−1x t + bD−1y t

Definition

(a,C , x t) + (b,D, y t) =

(
[a b],

[
C 0
0 D

]
,

[
x t

y t

])

This is a commutative, associative binary operation.
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Scalar multiplication (without the Ore condition)

Model for scalar multiplication: Suppose C ,D are invertible.

[a 0]
[
C −r tb
0 D

]−1 [
0
y t

]
=

[a 0]
[
C−1 C−1r tbD−1

0 D−1

] [
0
y t

]
=

[aC−1 aC−1r tbD−1]
[

0
y t

]
= aC−1r t · bD−1y t

Definition

(a,C , r t) · (b,D, y t) =

(
[a 0],

[
C −r tb
0 D

]
,

[
0
y t

])
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Constructing a module of quotients

Let K be the subsemigroup generated by all congruence classes of
the form (0,C , x t) and (a,C , 0t). Then we define
(a,C , x t) ∼ (b,D, y t) if there exist z1, z2 ∈ K with
(a,C , x t) + z1 = (b,D, y t) + z2.

The equivalence relation ∼ defines a congruence, and modding out
by it produces an abelian group.

If C ,C1 are invertible matrices such that C1A = A1C for matrices
A,A1, then AC−1 = C−1

1 A1 and so aAC−1x t = aC−1
1 A1x

t .

Lemma

Let a ∈ Rm, C ∈ Γn(S), x ∈ X n, and let A be any m× n matrix. If
there exist C1 ∈ Γm(S) and an m × n matrix A1 such that
C1A = A1C, then (aA,C , x t) ∼ (a,C1,A1x

t).
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The module of quotients and quotient functor

Theorem (1989)

(a) The above addition and multiplication, modulo congruence
given by ∼, define a ring of quotients Γ−1R and a module of
quotients Γ−1X.
(b) Elements of Γ−1R are entries in the inverse of a matrix in Γ(S).

Theorem (1989)

Γ−1R ∼= RΓ(S) and Γ−1X ∼= RΓ(S) ⊗R X.

This construction makes it possible give some characterizations of
the kernel of λ : R → RΓ(S). There are criteria due to Malcolmson,
and to Gerasimov, but unfortunately trying to use them in this
context is difficult.
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Universal localization as a useful language?

Theorem (Forster-Swan, first part)

Let R be commutative Noetherian and RM be finitely generated.
The minimal number of generators of M is less than or equal to
max{P prime}{ the minimal number of generators of MP

+ the Krull dimension of R/P}.

The minimal number of generators of MP can be calculated as the
dimension of the vector space MP/J(RP)MP over RP/J(RP).

To prove a noncommutative version of the theorem, Stafford had
to make a number of adjustments.
Among other “adjustments”, because there was no suitable analog
of localization, he replaced MP/J(RP)MP by Qcl(R/P)⊗R M/PM.
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Universal localization as a useful language?

Theorem (with Mauricio Medina)

Let P be a prime ideal of a left Noetherian ring. Then
Qcl(R/P)⊗R/P M/PM ∼=

(
RΓ(P) ⊗R M

)
/J(RΓ(P))

(
RΓ(P) ⊗R M

)
.

Proof: We have the following exact sequences:
0→ J(RΓ(P))→ RΓ(P) → Qcl(R/P)→ 0 as right R-modules,
0→ PM → M → M/PM → 0 as left R-modules.
(1) Qcl(R/P) is a right R/P module, so it is annihilated by P, and
therefore Qcl(R/P)⊗R PM = 0.

(2) Since M/PM is a left R/P-module,
Qcl(R/P)⊗R M/PM = Qcl(R/P)⊗R/P M/PM.

(3) The image of the mapping from J(RΓ(P))⊗R M into
RΓ(P) ⊗R M is J(RΓ(P))

(
RΓ(P) ⊗R M

)
.

John A. Beachy Universal localization



After tensoring

J(RΓ(P))⊗R PM

?
J(RΓ(P))⊗R M

?
J(RΓ(P))⊗R M/PM

?

0

-

-

-

RΓ(P) ⊗R PM

?
RΓ(P) ⊗R M

?
RΓ(P) ⊗R M/PM

?

0

-

-

-

Qcl(R/P)⊗R PM

?
Qcl(R/P)⊗R M

?
Qcl(R/P)⊗R M/PM

?

0

-

-

-

0

?

0

?

0

?

0
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After simplifying

J(RΓ(P))⊗R PM

?
J(RΓ(P))⊗R M

?
J(RΓ(P))⊗R M/PM

?

0

-

-

-

RΓ(P) ⊗R PM

?
RΓ(P) ⊗R M

?
RΓ(P) ⊗R M/PM

?

0

-

-

-

0

?
Qcl(R/P)⊗R M

?
∼=

Qcl(R/P)⊗R/PM/PM

?

0

-

-

-

0

?

0

?

0

?

0
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Conclusion:
Qcl(R/P)⊗R/P M/PM ∼=

(
RΓ(P) ⊗R M

)
/J(RΓ(P))

(
RΓ(P) ⊗R M

)
The language of universal localization makes Stafford’s “work-around”
look like a method from the theory of commutative localization.
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Thank you!
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Theorem (Gerasimov, 1982)

r ∈ ker(λ) for λ : R → RΓ(S) iff there is a relation of the form[
0 r
0 0

]
=

[
a11 a12

C21 A22

] [
B11 b12

D21 b22

]
with C21,D21 ∈ Γ(S).

Theorem (Malcolmson, 1982)

r ∈ ker(λ) for λ : R → RΓ(S) iff there exist a, b ∈ Rn and
P,Q ∈ Γn(S) such that

r = abt and (aQ,PQ,Pbt) = (0,P ′, ct) + (d ,Q ′, 0)

for some c , d and P ′,Q ′ ∈ Γ(S).
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