HYPERPLANE ARRANGEMENTS OVER THE RING

We study the structure of hyperplane arrangements over

the ring of integers modulo n. The specific problem we
are interested in Is the problem of counting the number
of points in the complement of the Thresholc
arrangement over a finite field, and the Complete
(Resonance) arrangement over a ring.

Given positive integers d and n, an odd prime p and a finite field
L, with characteristic p, an affine hyperplane (or simply hyperplane) in a

vector space Zd is the set of all solutions to an equation of the form Y&, a; x; =
b, where a;, b € Z,, and not all a; equal to zero. A finite collection of hyperplanes
in Zg Is called a hyperplane arrangement (or arrangement). An arrangement H

in Z4 is called the Threshold arrangementif H = {x; +x; = 0: 1 < i <j < d}.
An arrangement L in Z2 is called complete if L is the collection
{2xesaix; = 0: Sisnonemptyand S € {x;:1 < i <j < d}}.As mentioned in

the abstract, we are interested in the cardinality of the sets Z% \H and Zg \L. We

denote af(threshold) = |Z5\H |, aff= |Z§\L |.

Theorem 1.1. Let d be a positive integer, then there exists a
monic polynomials f;(x), h;(x) of degree d with integer
coefficients such that for any sufficiently large prime

p. af (threshold) = fy(p), af = ha(p).

Sketch of Proof. Consider the (Czi) hyperplanes defined by the

equations x; +x; = 0: 1 <i <j <d, thatis, the threshold
arrangement on Z%. For every non-empty subset P; of these
hyperplanes, let A; be a matrix whose rows are the coefficients of
hyperplanes contained in P; . Then A; defines the linear map:
Ai: Bt - B

Where m; = # of hyperplanes in P; Then Null(4;) is the
Intersection of the hyperplanes in P; . Therefore, we have

ag (threshold)
— |the set of all points in the union of the (Czl) hyperplanes in H|

Using the exclusion-inclusion principle, we have

ag(threshold) =p? — z tNull(4;)
A;ES
Therefore,

ag(threshold) = p? — z + pd-Trank(4)
A;SS

We know that rank(4;) is equal to the maximum order of a non-
zero minor of A4;. But the set of all minors of A; is finite. Therefore,
If v, IS the maximum prime divisor of one of these minors of 4;,
then for every p > v,, we have rank (4;) independent of p. Also,
rank(4;) = 1 because the entries of A; are not all zeros.
Therefore,

ag(threshold) = 0(p?).
QED.
Theorem 1.2 (R.P. Stanley). Let p be an odd prime, then the
exponential generating function of oz{} (threshold) is given by

d
z (threshold) Y 1+ -1
d=0

Let [x"]f (x) denote the coefficient of x™ in f(x), then from

theorem 1.2, we see that
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x4 p—1
ag (threshold) = [E] (1+x)(2e*—1) 2

-yt

r=0 r
_ —1
-+ Z(—l)pTl_TZ’” drd1 (p > )
=0 r
_ p—1
z( 1Pz g7 pd- 1( )(r+d)
=0

The last equation is a polynomial in p of degree d.
Special Cases.
Ford = 3: (1,6,4), we have

Let ()™ = 22 (), [f () mic = £(K), then
a; (threshold)
—1
=0T ( )[(x’v@ +6(N)@
r=0 7”

+ 4(x’")(1)]x=1
=@P-D@-3)p-5+6(p—-D@E-3)+4(—-1)

=(p—1)°
Ford = 4: (1,10,19,5), we have
o, (threshold)
_ —1
=0T ( ) ()@ + 107
r=0 T

+19(x")P + 5(x"”)(1)]x=1

=(@-DE-3)@-5@-7)

+10(p - D -3)p-5+19@p-D@E-3)+5@—-1)
= p* —6p3 +15p? — 17p + 7

Theorem 1.3. Let the finite sequence {a;}%-1 be such

that r¢ + dr@=1 = |34 ) (x™) (4" k)] , then

d-1  d-
al(threshold) = — (2r - 1))
simsiorn - S o

Proof. a, d(threshold) =

p—1
Zr>o( 1)__T 2" rd-1 ( ) (r+d)
r
o _
p—1 P — 1
Z(—1)T‘7’ 27 ( > ) 2 a (x)@d-k)
r=0 r | k=0 | O
d—1
ZZ“ Sk p—1p—3 p—2d+2k+1
k_O k 2 . 2 . n o 2

=Yioa [Ifizfp— (2r—1))  QED.
Therefore, computing ag for all odd prime p is a problem

reduced to computing the finite sequence a; which are
the coefficients of (x7){@~%) such that r¢ + drd—1 =

[Xf=6 ar () 47¥]__ .Ingeneral, for d = d, let ap, 4 be
such that r® + dr¢=! = X0 apmq (xM)@"™] _ then

d—1

]| ) ama G|

'm=0

0<k<d—m

4x=1
d—k

— z Xm,d (_1)d—m—k Sd—m—k,d—m—l

m=0

Where

Sp,q — 2 alaz- .. ap

OSa1<a2<m<aqu

—_ z alaZ---ap ; SO,q — 1

1=a1<a;<.<apsq
In particular, we have
dd—1) d(d+1)
2 2

aO,d — 1, al,d =d + Sl,d—l =d +
= 51,4

Also, for k =0,1,2,...
recurrence relation

,d — 2, we have the following

d—k
z m,d (—1)d-m-k Sa-m-k,d-m-1 =0
m=0
g = — 220 Bma D™ S, aem-1; 2 <k <d.

Ford =5, we have

o5 = 1; d15 = 15; dy5 = —(“0,552,3 — a1,551,3) = 55;

ag’s(threShald) — _(_a0’553’4 +a1’5 52,3 — a2,551,2) — 50,

Qg5 = _(“0,554,4 —Q153533 + U595, — “3,551,1) =6

=« (threshold)
=@P-DE-3)@P-5@P-7)P-9)+15(@ -/
—3)—-5)P@—-7)+55@E-1E-3)(p—5)+50(p
- Dp-3)+6(-—-1)

The Complete Arrangement
Action of Aut(Z,) on Z& \L

Let Aut(Z,,) denote the automorphism group of Z,,, and
L, the complete hyperplane arrangement on Z2 where
Z., 1s the ring of integers modulo n. Then Aut(Z,) acts
naturally on Z2 \Lcomponent-wise. Here, we will identify
Aut(Z,) withtheset{k: 1 <k <n-—1and gcd(k,n) =
1}. An element x € Z2 \L is called irreducible if
gcd(x,n) = 1, otherwise x is called reducible. Let
R% (resp. I%) denote the sets of reducible (resp.
irreducible) elements of Z% \L. Then,

ZE\L = R% u 14
The following theorem shows that computing
al = | Z2&\L| is equivalent to computing B2= |I1¢|.

Theorem 2.1 ([1]). Letn = 3 and 1 < d < n and consider the
action of Aut(Z,) on Z%\L.

(a) Forany k € Aut(Zn) and any x € Z&\L,we have k €
Stab(x) ifand only if ed (k
gcd(x,n) = 1, then Stab(x) = 1 for any x € Z\L.

divides gcd(x,n). In particular, if

(b) The number of orbits of the restricted action of Aut(Z,,) on

d
I¢ is equal to qb'[z:t) . Thus ¢(n) divides B2.

(©) 2= Tmimman BE and B = Smmmen @ ()

m

(d)Ifd >max{m: 1 <m <nandm|n}, then a=£2 and
o (n) divides a. Moreover, the conclusion of this statement

holds if d >~
Determining aj for d > ord < 3.

We first determine af for d > ~. We will use the following
Important theorem based on Savchev and Chen.
Theorem 2.2 ([2]). Every element x € Z%\L of length d > g

can be uniquely represented as (x,k,x,k,...,xzk) where k
generates Z, and x; ,x,,..., x4 are positive integers whose
sum is less than n.

Theorem 2.3. Letn>3and d >"/,. Then, ay= ¢(n) (n . 1)

Sketch of Proof. We consider the action of Aut(%Z,,) on Zd \L .
Since d > "/, it follows from theorem 2.1(d) that aj;= ¢(n)N,
where N is the number of orbits under the action of Aut(Z,,).
So, it suffices to determine N. Thus, N is the number of
ordered tuples (x; ,x2 ,...,Xq) that satisfy »'*, x; < n.Thus,

v = 21—1 n—l)

Therefore, aj= ¢(n) (n ; 1)_ QED.

Corollary 1 For any positive integer k, we have al* %=
d(n) ( 1) for all large enough value of n. Moreover,
¢(n+1) p(n+1) _

[iminf = 0,and lim sup

n ¢(n) ' n ¢(n)
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