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Vertex algebroids play a vital role in the study of 

representation theory of vertex algebras. However, 

the classification of vertex algebroids is far from 

being complete. For this project, we classify vertex 

A-algebroids B associated with given cyclic non-Lie 

left Leibniz algebras B when B are 2- dimensional 

cyclic Leibniz algebras and 3-dimensional cyclic 

Leibniz algebras. For each given Leibniz algebra B, 

we use its algebraic structure and properties of 

vertex algebroid to construct a compatible unital 

commutative associative algebra A such that B is a 

vertex A-algebroid. As an application, we use the 

constructed vertex A-algebroids B to create a family 

of indecomposable non-simple vertex algebras 𝑉𝐵  . 

In addition, we use the algebraic structure of the 

unital commutative associative algebras A that we 

found to study relations between certain types of 

vertex algebras 𝑉𝐵 and the vertex operator algebra 

associated with the rank one Heisenberg algebra.

Definition 4: [LiY] Let A,∗  be a unital commutative 

associative algebra and let B be a module for A as a 

nonassociative algebra. Then a vertex A-algebroid 

structure on B exactly amounts to a 1-truncated 

conformal algebra structure on 𝐶 = 𝐴 ⊕ 𝐵 with 

𝑎, 𝑎′ ∈ 𝐴, 𝑢, 𝑣 ∈ 𝐵 such that

• 𝑎 ⋅ 𝑎′ ⋅ 𝑢 − 𝑎 ∗ 𝑎′ ⋅ 𝑢 = 𝑢0𝑎 ⋅ 𝜕 𝑎′ + 𝑢0𝑎′ ⋅ 𝜕 𝑎

• 𝑢0 𝑎 ⋅ 𝑣 − 𝑎 ⋅ 𝑢0𝑣 = 𝑢0𝑎 ⋅ 𝑣

• 𝑢0 𝑎 ∗ 𝑎′ = 𝑎 ∗ 𝑢0𝑎′ + 𝑢0𝑎 ∗ 𝑎′

• 𝑎0 𝑎′ ⋅ 𝑣 = 𝑎′ ∗ 𝑎0𝑣

• 𝑎 ⋅ 𝑢 1𝑣 = 𝑎 ∗ 𝑢1𝑣 − 𝑢0𝑣0𝑎

• 𝜕 𝑎 ∗ 𝑎′ = 𝑎 ⋅ 𝜕 𝑎′ + 𝑎′ ⋅ 𝜕 𝑎

Definition 5: Let 𝐼 be a subspace of a vertex A-

algebroid B. The vector space 𝐼 is called an ideal of 

the vertex A-algebroid B if 𝐼 is a left ideal of the left 

Leibniz algebra B and 𝑎 ⋅ 𝑢 ∈ 𝐼 for all 𝑎 ∈ 𝐴, 𝑢 ∈ 𝐼. 

We set 𝐴 𝜕(𝐴) ≔ 𝑆𝑝𝑎𝑛{𝑎 ⋅ 𝜕(𝑎′)|𝑎, 𝑎′ ∈ 𝐴}. The vector 

space 𝐴𝜕 𝐴  is an ideal of the vertex A-algebroid B. 

Moreover, 𝐴𝜕 𝐴  is an abelian Lie algebra. Observe 

that for 𝑎, 𝑎′, 𝑎′′ ∈ 𝐴, 𝑢 ∈ 𝐵, we have

𝑎 ⋅ 𝜕 𝑎′
0

𝑎′′ = 0, and (a ⋅ 𝜕(a′))0u = a ⋅ (𝑢0𝜕(a′)) +

(𝑢0a) ⋅ 𝜕(a′) + 𝜕(𝑢1(a ⋅ 𝜕(a′)) ∈ 𝐴𝜕(A)

Proposition 1: Let A be a unital commutative 

associative algebra with the identity 1A. Let B be a 

vertex A-algebroid such that B is a cyclic non-Lie left 

Leibniz algebra, B ≠ A𝜕 A , and dim(B)=n. Then, 

there exists b ∈ B such that {𝑏, 𝑏0𝑏, … , 𝑏0
𝑛−1𝑏} is a 

basis for B. We set a = b1b. Assume that Ker 𝜕 =

C1A. Then A is a local algebra with a basis 

{1A, a, b0a, … , b0
n−2a}.

Sketch proof of proposition 1: We show 

{1A, a, b0a, … , b0
n−2a} is linearly independent. We 

set α1A + α0a + α1b0a + ⋯ + αn−2 b0
n−2a = 0. We 

then apply 𝜕 to this equation and the result is 

α0𝜕 a + α1𝜕 b0a + ⋯ + αn−2𝜕 b0
n−2a = 0. 

In an earlier discovery, we know that 

{𝜕 a , 𝜕 b0a , … , 𝜕 b0
n−2a } is linearly independent 

since it is a basis for 𝜕 A . This allows us to conclude 

α0 = α1 = ⋯ = αn−2 = 0. Also, since we have α1A = 0 

we know α = 0 and {1A, a, b0a, … , b0
n−2a} is linearly 

independent. In this section, we also find 𝐴 =

𝑆𝑝𝑎𝑛{1 𝑏 𝑏 𝑛 2 }.

Classification of vertex algebroids associated 
with non-Lie left Leibniz algebras

2-dimensional case
For a non-Lie Leibniz algebra B such that dim B=2, B 
is isomorphic to a cyclic left Leibniz algebra 
generated by b with either b0 b0b = 0 or b0 b0b =
b0b. For theorem 1 below, we focus on b0 b0b = 0.

Theorem 1: Let A and B be defined as in 
proposition 1 with dim B=2, B ≠ A𝜕 A , and Ker 𝜕 =
C1A. Clearly, there exists b ∈ B such that {b, b0b} is a 
basis for B. We set a = b1b, the set {b, 𝜕 a } is a basis 
of B and the set {1A, a} is a basis for A. We assume 
that b0 b0b = 0. We found the following:
b0a = 0, a ⋅ b ∈ 𝜕 A , a ∗ a = 0 with A ≅ C x / x2 , and 
a ⋅ 𝜕(a) = 0. 
In addition, B is a module of A as a commutative 
associative algebra. Therefore, the ideal (a) is the 
unique maximal ideal of A. Moreover, for u ∈ a , 
w ∈ B/A𝜕 A , w0u = 0 and u ⋅ w = 0.

Sketch proof of theorem 1: 
Assume that b0 b0b = 0. Since 𝜕 a = 2b0b, we have 
b0𝜕 a = 0. Since 𝜕 b0a = b0𝜕 a = 0, we have that 
b0a ∈ Ker 𝜕 = C1A. Thus, there exists λ ∈ C such 
that b0a = λ1A. Moreover, b0b0a = 0. 

We set , . 

Since 

. Also, we have 

. 

This shows us that . Since 

{b, 𝜕 a } is linearly independent, we can conclude 
that λ = 0 and b0a = 0 as well as other relations.

3-dimensional case
There are 4 types of cyclic non-Lie Leibniz algebras 
of the 3-dimensional case. Here we show only the 
case when 𝑥0𝑥 = 𝑦 and 𝑥0𝑦 = 𝑧.

Theorem 2: Let A and B be defined as above with 
dim B=3, B ≠ A𝜕 A , and Ker 𝜕 = C1A. Then there 
exists b ∈ B such that {b, b0b, b0

2b} is a basis of B 
such that b0

3b = 0. Equivalently, {b, 𝜕 a , 𝜕 b0a } is 
a basis of B such that 𝑏0𝜕 𝑏0𝑎 = 0. In addition, if we 
set a = b1b, then {1A, a, b0a} is a basis of A. 

Theorem 2 continued:
We assume b0𝜕 b0a = 0. 
Then β = 0, a ∗ b0a = 0, a ∗ a = γ1 + 1 χ1A + γ0b0a, 

, , and 

γ0χ = 0. 
If γ0 = 0, we have b0a ⋅ b = 0, χ = 0, a ∗ a = 0, a ⋅
𝜕 a = 0, a ⋅ b = γ1𝜕 b0a , A ≅ C x, y / x2, y2, xy . 
The vector space a, b0a  is the unique maximal ideal 
of A. For u ∈ a, b0a , w ∈ B/A𝜕 A , w0u ∈ a, b0a  and 
u ⋅ w = 0.
If γ0 ≠ 0, we have a ∗ a = γ0b0a, a ∗ a ∗ a = 0, b0a ⋅ b =

, . 

The vector space (a) is a unique maximal ideal of A. 
For u ∈ a , w ∈ B/A𝜕 A , w0u ∈ a  and u ⋅ w = 0.
For β, γ0, γ1, χ ∈ C.

Sketch proof of theorem 2: From an earlier lemma 
we have b0𝜕 b0a = c0𝜕 a + c1𝜕 b0a  for c0 , c1 ∈ C. If 
we set c0, c1 = 0, we have the following relations:
β = 0,a ∗ b0a = 0, a ∗ a = γ1 + 1 χ1A + γ0b0a, a ⋅ b =

, , and . 

We consider when γ0 = 0. Recall from definition 3, 
that for u, v ∈ B, a′ ∈ A, we have 
u0 a′ ⋅ v − a′ ⋅ u0v = u0a′ ⋅ v. 
When we set u = v = b and a′ = a, we have b0 a ⋅ b −
a ⋅ b0b = b0a ⋅ b. Through several calculations we 
find that χ = 0 and a ∗ a = 0. Hence A ≅ C x, y /
x2, y2, xy .

Background Materials

Definition 1: [DMS,FM] A left Leibniz algebra ℒ
 is a C-vector space equipped with a bilinear map [ , ] 
: ℒ × ℒ→ℒ satisfying the Leibniz identity a0 b0c =
a0b 0c + b0 a0c  for all a, b, c ∈ ℒ. 

Definition 2: Let ℒ be a left Leibniz algebra. ℒ is 
cyclic if and only if there exists some u ∈ ℒ such that 

ℒ = u = Span {uk|k = 1,2, … }. If ℒ = v , we call v a 
generator of ℒ.

Definition 3: [GMS] A 1-truncated conformal algebra 

is a graded vector space 𝐶 = 𝐶0 ⊕ 𝐶1  equipped with a 

linear map 𝜕: 𝐶0 → 𝐶1 and bilinear operations 𝑢, 𝑣 →

𝑢𝑖𝑣 for 𝑖 = 0,1 of degree −𝑖 − 1 on 𝐶 = 𝐶0 ⊕ 𝐶1 such 

that the following axioms hold:

 Derivation for 𝑎 ∈ 𝐶0 , 𝑢 ∈ 𝐶1 , 

𝜕𝑎 0 = 0, 𝜕𝑎 1 = −𝑎0, 𝜕 𝑢0𝑎 = 𝑢0𝜕 𝑎 ;

 Commutativity for 𝑎 ∈ 𝐶0 , 𝑢, 𝑣 ∈ 𝐶1 , 

 𝑢0𝑎 = −𝑎0𝑢, 𝑢0𝑣 = −𝑣0𝑢 + 𝜕 𝑢1𝑣 , 𝑢1𝑣 = 𝑣1𝑢;

 Associativity for α, β, γ ∈ C0 ⊕ 𝐶1 , 


