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Abstract:

This talk is to provide a
certain correspondence with
an algebraic and a geometric
structures with respect the Lie

algebras



Introduction

This note is to deal with a cetain survey based

on our papers mainly and to give several

examples of triple systems, furthermore to

describe a history of Jordan rivers in

nonassociative algebras from the author’s

viewpoint. On the other hand, this work with

respect to Jordan and Lie structures is in

close contact with a symmetric (super)space

equipped with commplex structure, since the



tangent space of the symmetric (super)space

is a δ-Lie triple system (δ = ±1).

From mathematical history’s viewpoint, the

concept discussed here first appeared with a

class of nonassociative algebras, that is

commutative Jordan algebras, which was the

defining subspace g−1 in the

Tits-Kantor-Koecher (for short TKK)

construction of 3-graded Lie algebras

g = g−1 ⊕ g0 ⊕ g1, such that [gi, gj ] ⊆ gi+j .

Nonassociative algebras are rich in algebraic



structures, and they provide an important

common ground for various branches of

mathematics, not only for pure algebra and

differential geometry, but also for

representation theory and algebraic geometry

(for example, [11], [46], [59], [61], [64]).

Specially, the concept of nonassociative

algebras such as Jordan and Lie

(super)algebras plays an important role in

many mathematical and physical subjects ([5],

[10]-[13], [15], [22], [26], [28], [29], [33], [34],



[35], [45], [54], [55], [60], [65]). We also note

that the construction and characterization of

these algebras can be expressed in terms of

the notion of triple systems ([1]-[4], [6]-[8],

[20], [23], [24], [40]-[45], [50]-[53], [56]-[58]) by

using the standard embedding method ([22],

[48], [49], [57], [63]). In particular, the

generalized Jordan triple system of second

order, or (−1, 1)-Freudenthal Kantor triple

system (for short (−1, 1)-FKTS), is a useful

concept ([13]-[21], [41]-[44], [47], [62]) for the



constructions of simple Lie algebras, while the

(−1,−1)-FKTS plays the same role ([6], [22],

[25], [27], [30], [32], [33]) for the construction

of Lie superalgebras, while the δ-Jordan Lie

triple systems act similarly for that of Jordan

superalgebras ([23], [24], [56]). Specially, we

have constructed a model of basic Lie

superalgebras D(2, 1;α), G(3) and F (4) ([22],

[25], [27]).

As a final comment of this introduction, we

provide well-known results due to O. Loos as



follows; if A is a unital commutative Jordan

algebra with a unital element e, that is,

satisfying (xy)x2 = x(y(x2)), and xy = yx,

then the triple product given by

{xyz} = (xy)z + x(yz)− y(xz)

defines a Jordan triple system with

{xey} = xy, i.e., it satisfies the two relations

{xy{abc}} =

{{xya}bc} − {a{yxb}c}+ {ab{xyc}} (this

relation is often called a fundamental



identity), and {xyz} = {zyx} (this relation is

called a commutative identity, since

xy = {xey} = {yex} = yx) and next the new

triple product [xyz] given by

[xyz] = {xyz} − {yxz}

defines a Lie triple system.

Briefly summarizing this article, we will

generalize these results and exhibit examples

of Lie (super)algebras associated with

generalized Jordan triple systems. Toward to



its applications, in particular, we will give a

construction of symmmetric (super)spaces

with an almost complex structure (i.e.,

eqipped with Nijenhuis operator).

Roughly describing, we have an illustration

for our concept ;

Algebraic structures ⇐⇒
Geometric structures.

For examples, it seems that there are certain

algebraic structures associated with

symmetric, R-symmetric, homogeneous



spaces, totally geodesic manifold, and

symmetric domains, etc.



1 Definitions and Results
In this paper triple systems have finite

dimension being defined over a field Φ of

characteristic ̸= 2 or 3, unless otherwise

specified. In order to render the paper as

self-contained as possible, we recall first the

definition of a generalized Jordan triple

system of second order (for short GJTS of 2nd

order) ([41]-[45]) .

A vector space V over a field Φ endowed with



a trilinear operation V × V × V → V ,

(x, y, z) 7−→ (xyz) is said to be a GJTS of 2nd

order if the following conditions are fulfilled:

(ab(xyz)) = ((abx)yz)− (x(bay)z)+ (xy(abz)),
(1)

K(K(a, b)x, y)−L(y, x)K(a, b)−K(a, b)L(x, y) = 0, (2)

where L(a, b)c := (abc) and

K(a, b)c := (acb)− (bca).

A Jordan triple system (for short JTS) satisfies



(1) and the following condition

(abc) = (cba), i.e., K(a, c)b = 0. (3)

The JTS is a special case in the GJTS of 2nd

order since K(x, y) ≡ 0.

We next can generalize the concept of GJTS

of 2nd order as follows (see [13], [14], [18],

[22], [28], [36] [63] and the earlier references

therein).

For ε = ±1 and δ = ±1, a triple product that



satisfies the identities

(ab(xyz)) = ((abx)yz)+ε(x(bay)z)+(xy(abz)),
(4)

K(K(a, b)x, y)−L(y, x)K(a, b)+εK(a, b)L(x, y) = 0, (5)

where

L(a, b)c := (abc), K(a, b)c := (acb)− δ(bca),
(6)

is called an

(ε, δ)−Freudenthal −Kantor triple system



(for short (ε, δ)-FKTS). An (ε, δ)-FKTS is

said to be unitary if Id ∈ {K(a, b)}span.
A triple system satisfying only the identity (4)

is called a generalized FKTS (for short

GFKTS), while the identity (5) is called the

second order condition (this condition needs to

construct of 5-graded Lie (super)algebras).

Remark From the relation Eq. (6), we note

that
K(b, a) = −δK(a, b). (7)



A triple system is called a (α, β, γ) triple

system associated with a bilinear form if

(xyz) = α < x, y > z+β < y, z > x+γ < z, x > y,

where < x, y > is a bilinear form such that

< x, y >= κ < y, x >, κ = ±1, α, β, γ ∈ Φ.

From now on we will mainly consider this

type of triple system.

An (ε, δ)-FKTS is said to be balanced if there

is a bilinear form < x, y >∈ Φ∗ such that



K(x, y) =< x, y > Id, that is,

dim {K(x, y)}span = 1 holds.

Remark We note that a balanced triple

system (i.e., it fulfills K(x, y) =< x, y > Id) is

unitary, since Id ∈ {K(x, y)}span.
Triple products are denoted by (xyz), {xyz},
[xyz] and < xyz > upon their suitability.

Remark We note that the concept of GJTS

of 2nd order coincides with that of

(−1, 1)-FKTS. Thus we can construct the

corresponding Lie algebras by means of the



standard embedding method ([6], [13]-[19],

[21], [22], [25], [27], [43]).

For δ = ±1, a triple system

(a, b, c) 7→ [abc], a, b, c ∈ V is called a δ-Lie

triple system (for short δ-LTS) if the following

three identities are fulfilled

[abc] = −δ[bac],
[abc] + [bca] + [cab] = 0,

[ab[xyz]] = [[abx]yz] + [x[aby]z] + [xy[abz]],
(8)



where a, b, x, y, z ∈ V . An 1-LTS is a LTS

while a −1-LTS is an anti-LTS, by ([14]). Note

that the set L(V, V ) of all left multiplications

L(x, y) of V is a Lie subalgebra of Der V ,

where we denote by L(x, y)z = [xyz].

Proposition 1.1 ([13]-[16], [22]) Let

(U(ε, δ), < xyz >) be an (ε, δ)-FKTS. If J is an

endomorphism of U(ε, δ) such that

J < xyz >=< JxJyJz > and J2 = −εδId,

then (U(ε, δ), [xyz]) is a LTS (if δ = 1) or an



anti-LTS (if δ = −1) with respect to the product

[xyz] :=

< xJyz > −δ < yJxz > +δ < xJzy > − < yJzx > .

Remark Note that for the case of ε = −1, δ = 1

and K(x, y) = 0, we have a special case in

Prop.1.1, that is, it implies that J = Id, {xyz}
is the JTS and [xyz] = {xyz} − {yxz} is the

LTS described in Introduction.



Corollary ([13]) Let U(ε, δ) be an (ε, δ)-FKTS.

Then the vector space

T (ε, δ) = U(ε, δ)⊕ U(ε, δ) becomes a LTS (if

δ = 1) or an anti-LTS (if δ = −1) with respect

to the triple product[(
a

b

)(
c

d

)(
e

f

)]
=

(
L(a, d)− δL(c, b) δK(a, c)

−εK(b, d) ε(L(d, a)− δL(b, c))

)(
e

f

)
.



Thus we can obtain the standard embedding

Lie algebra (if δ = 1) or Lie superalgebra (if

δ = −1),

L(U(ε, δ)) = D(T (ε, δ), T (ε, δ))⊕ T (ε, δ),

associated with T (ε, δ) where

D(T (ε, δ), T (ε, δ)) is the set of inner

derivations of T (ε, δ);

D(T (ε, δ), T (ε, δ)) :=

{(
L(a, b) δK(c, d)

−εK(e, f) εL(b, a)

)}
span

,



T (ε, δ) :=

{(
x

y

)∣∣∣∣x, y ∈ U(ε, δ)

}
span

.

We use the following notation:

k := {K(x, y) ∈ End U(ε, δ)|x, y ∈ U(ε, δ)} and

{EFG} := EFG+GFE, ∀E,F,G ∈ k.

Then, we may make the structure of a JTS k

with respect to the triple product {EFG} ∈ k,

hence [EFG] = {EFG} − {FEG} has a

structure of LTS ([20]).



We next introduce an analogue of Nijenhuis

tentor in differential geometry defined by

N(X,Y ) =

[JX, JY ]− J [JX, Y ]− J [X,JY ] + J2[X,Y ],

∀X,Y ∈ T (ε, δ)

and J =

(
0 ε

−δ 0

)
, that is J2 = −εδId,

hence if J2 = −Id, then this (the case of

εδ = 1) has a structure of allmost complex.



Proposition 1.2 Let U be a (ε, δ)-FKTS,

T (ε, δ) be the δ-LTS and L(U) be the standard

embedding Lie (super)algebra associated with U.

Then the following are equivalent:

(i) N(X,Y ) = 0,∀X,Y ∈ T (ε, δ),

(ii)

εδL(y, x)−εL(x, y) = K(x, y), ∀x, y ∈ U(ε, δ).

This J ∈ End T (ε, δ) may generalize on

J̃ ∈ End L(U) defined by

J̃ := JD(X,Y )J−1 ⊕ JZ, ∀X,Y, Z ∈ T (ε, δ).



Then we note that J̃ has an interesting

property, for example, an automorphism of

L(U) associated with U .

Proposition 1.3 For a (ε, δ)-FKTS U and

L(U) as in above Proposition, assuming ε = δ

and K(x, y) = L(y, x)− εL(x, y), then the

elements f =

(
0 1

0 0

)
, g =

(
0 0

1 0

)
,

h =

(
1 0

0 −1

)
∈ sl(2) (i.e.,

[f, g] = h, [f, h] = −2f, [g, h] = 2g ) are



derivations of L(U).

Remark We note that

L(U) = L(U(ε, δ)) := L−2⊕L−1⊕L0⊕L1⊕L2

is the five graded Lie (super)algebra such that

U(ε, δ)⊕ U(ε, δ) = L−1 ⊕ L1 =T (ε, δ)

(δ-LTS), L−2 = k (JTS) and

D(T (ε, δ), T (ε, δ)) = L−2 ⊕ L0 ⊕ L2 (the

derivation of T (ε, δ)) equipped with

[Li, Lj ] ⊆ Li+j and

L−1 ⊕ L1 = L(U)/L−2 ⊕ L0 ⊕ L2. In

Introduction, we had used the notation



g = g−1 ⊕ g0 ⊕ g1 instead of L−1 ⊕ L0 ⊕ L1.

This Lie (super)algebra construction is one of

reasons to study nonassociative algebras and

triple systems without using root systems (for

a Lie superalgebra, refer to ([9], [12], [60])).

Also this construction can be represented by

the concept of a normal triality algebra (see

[34], [35]).



2 Examples of (ε, δ)-JTS

We will consider here examples of the special

case defined by bilinear forms < x, y >, that

is, an (ε, δ)-JTS of (α, β, γ) triple systems

equipped with K(x, y) ≡ 0. Moreover, we give

two examples (Prop. 2.2 and Prop.2.3)

without the cases of (ε, δ)-JTS.

Example 2.1 Let V be a vector space with a

symmetric bilinear form < x, y >. Then

< xyz >=< x, y > z+ < y, z > x− < z, x > y



defines on V a (−1, 1)-JTS.

Note that (−1, 1)-JTS is same as the JTS.

Example 2.2 Let V be a vector space with

an anti-symmetric bilinear form < x, y >.

Then

< xyz >=< x, y > z+ < y, z > x− < z, x > y

defines on V a (1,−1)-JTS.

Example 2.3 Let V be a vector space with a



symmetric bilinear form < x, y >. Then

< xyz >=< x, y > z− < y, z > x

defines on V a (−1,−1)-JTS.

Example 2.4 Let V be a vector space with

an anti-symmetric bilinear form < x, y >.

Then

< xyz >=< x, y > z− < y, z > x

defines on V a (1, 1)-JTS.



Example 2.5 Let V be a set of alternative

matrix Asym(n,Φ) = {x|tx = −x}, where tx

denote the transpose matrix of x. Then

< xyz >= xtyz − εztyx, where ∀ x, y, z ∈ V

defines on V a (ε,−ε) JTS, that is, the case of

ε = −1 ⇒ JTS.

Remark Let V be the set of p× q matrix

Mat(p, q; Φ). Then this vector space V is a

JTS with respect to the product

{xyz} = xtyz + ztyx, ∀x, y, z ∈ V .



Proposition 2.1 Let (U,< xyz >) be an

(ε, δ)-JTS. Then the triple system is a δ-LTS

with respect to the new product

[xyz] =< xyz > −δ < yxz > . (9)

In the next section 3 subsection we study the

case of an (ε, δ)-FKTS, but we give first two

examples which are not (ε, δ)-JTS as it

follows.

Proposition 2.2 Let (U,< xyz >) be a triple

system with < xyz >=< y, z > x and



< x, y >= −ε < y, x >. Then this triple system

is an (ε, δ)-FKTS.

Proposition 2.3 ([16], [18]) Let U be a

balanced (1, 1)-FKTS satisfying

<< xxx >, x >≡ 0 (identically) and < x, y > is

nondegenerate. Then U has a triple product

defined by

< xyz >=
1

2
(< y, x > z+ < y, z > x+ < x, z > y).

(10)

Note that the balanced (1, 1)-FKTS induced



from an exceptional Jordan algebra is closely

related to the 56 dimensional meta symplectic

geometry due to H. Freudenthal ([13], [15],

[16], [18] and the earlier references therein).

Also the correspondence of a quaternionic

symmetric space and the balanced (1,1) FKTS

has been studied in ([5]). On the other hand,

for (−1,−1) -FKTS, see ([6] and[7], [30], [31]).



3 Examples of Lie

(super)algebras associated

with (ε, δ) FKTS

We will exhibit the examples of some triple

systems and Lie (super)algebras associated

with their triple systems.

Example a) C(n+ 1) type is of dimension

dimC(n+ 1) = 2n2 + 5n+ 1.

Let U be the set of matrices M(1, 2n; Φ).



Then, by Example 2.2, it follows that the

triple product

L(x, y)z =< xyz >:

=< x, y > z+ < y, z > x− < z, x > y

such that the bilinear form fulfills

< x, y >= − < y, x >, is a (1,−1)-JTS, since

K(x, y) ≡ 0 (identically). Furthermore, the

standard embedding Lie superalgebra is

3-graded and of C(n+ 1) type. For the



extended Dynkin diagram, we obtain

L−1 ⊕ L0 ⊕ L1 :={(
L(a, b) 0

0 εL(b, a)

)∣∣∣∣ ε = 1 = −δ

}
span

⊕
{(

e

f

)}
span

∼=

⊗ α1 α2 α3 αn αn+1

∥ > ◦ − ◦ − −−−− ◦ <= ◦

⊗ α0

= C(n+ 1) type (α1 ⊗ deleted).



Also, we obtain

L0 :=

{(
L(a, b) 0

0 εL(b, a)

)∣∣∣∣ ε = 1 = −δ

}
span

∼=

α2 α3 αn αn+1

◦ − ◦ − −−−− ◦ <= ◦

= Cn ⊕ ΦId (α1 ⊗ and α0 ⊗ deleted).

Thus the last diagram is obtained from the

extended Dynkin diagram of C(n+ 1) type by

deleting α1 ⊗ and α0 ⊗.



Example b) B(n, 1) and D(n, 1) type are of

dimension dimB(n, 1) = 2n2 + 5n+ 5 and

dimD(n, 1) = 2n2 + 3n+ 3, respectively.

Let U be the set of matrices M(1, l; Φ). Then,

by straihtfoward calculations, it follows that

the triple product

L(x, y)z =< xyz >:

=
1

2
(< x, y > z− < y, z > x+ < z, x > y)

such that the bilinear form fulfills



< x, y >=< y, x > is a (−1,−1)-FKTS.

Furthermore, the standard embedding Lie

superalgebra is 5-graded and of B(n, 1) type if

l = 2n+ 1, or of D(n, 1) type if l = 2n. For

the extended Dynkin diagram, we obtain from

the results of § 1 the following.

For the case of B(n, 1) type we have

L−2 ⊕ L0 ⊕ L2 := D(T (−1,−1), T (−1,−1)) ={(
L(a, b) δK(c, d)

−εK(e, f) εL(b, a)

)∣∣∣∣ ε = −1 = δ

}
span

∼=



α0 α1 α2 αn αn+1

◦ => ⊗− ◦ −−−−− ◦ => ◦

= A1 ⊕Bn type (α1 ⊗ deleted).

Also, we obtain

L0 :=

{(
L(a, b) 0

0 εL(b, a)

)∣∣∣∣ ε = −1 = δ

}
span

∼=

α2 α3 αn αn+1

◦ − ◦ − −−−− ◦ => ◦



= Bn ⊕ ΦId (α1 ⊗ and α0 ◦ deleted).

Thus the last diagram is obtained from the

extended Dynkin diagram of B(n, 1) type by

deleting α1 ⊗ and α0 ◦.
Similarly, for the case of D(n, 1) type we have

L−2 ⊕ L0 ⊕ L2
∼= A1 ⊕Dn, L0

∼= Dn ⊕ ΦId.

We note that this triple system is balanced

and with a complex structure of Nijenhuis

tensor zero, since

K(x, y) =< x, y > Id = L(x, y) + L(y, x)



Remark We note that the case of balanced is

discussed in ([18], [28]). On the other hand,

for the construction of simple exceptional Lie

algebras G2, F4, E6, E7, E8, refer to ([16],

[18], [21]). Also, for the construction of simple

Lie superalgebras G(3), F (4),

D(2, 1, α), P (n), Q(n),H(n), S(n) and W (n),

refer to ([22], [25], [27], [31]). Of course, these

construction are created from the concept of

triple systems without using systems of roots.

Thus, moreover, these examples imply that



our methods may apply the symmetric

superspace (the case of δ = −1) as well as the

structures (see, [5], [46]) of the symmetric

spaces (the case of δ = 1), however we will not

go into the details and in future, we will

discuss it.

In the rest of this section, we will consider the

constructions of simple B3-type Lie algebra

associated with several triple systems (the

case of ε = −1 and δ = 1), more easily. That

is, we will give several examples; (c) the case



of a JTS (i.e., (−1, 1)-FKTS with

K(x, y) ≡ 0), (d) the case of a GJTS of 2nd

order (i.e., (−1, 1)-FKTS with

dim{K(x, y)}span = 1), (e) the case of a

GJTS of 2nd order (i.e, (−1, 1)-FKTS with

dim{K(x, y)}span = 3).

Example c) We study the case of

g−1 = U = Mat(1, 5;Φ). Hereafter in this

subsection, as a reason of traditional notation,

we often would like to denote by gi instead of

Li, (i = 0,±1,±2) and by {xyz} instead of



< xyz >.

In this case, g−1 is a JTS with respect to the

product

{xyz} = xtyz + ytzx− ztxy, ∀ x, y, z ∈ g−1

where tx denotes the transpose matrix of x.

By straightforward calculations, the standard

embedding Lie algebra L(U) = g can be

shown to be a 3-graded B3-type Lie algebra

with g = g−1 ⊕ g0 ⊕ g1 and a LTS



T (U) = g−1 ⊕ g1. Thus, we have

g0 = Der U ⊕Anti−Der U ∼= B2 ⊕ ΦH,

where H =

(
Id 0
0 −Id

)
.

Here in view of the relations

[S(x, y), L(a, b)] = L(S(x, y)a, b)+

L(a, S(x, y)b), and

[A(x, y), L(a, b)] = L(A(x, y)a, b)

−L(a,A(x, y)b) for all L(a, b) ∈ End U , when



ε = −1, δ = 1, we use the following notations;

Der U := {L(x, y)− L(y, x)}span,

Anti−Der U := {L(x, y) + L(y, x)}span,

g0 =

{(
L(x, y) 0

0 − L(y, x)

)}
span

= {S(x, y) +A(x, y)

}
span



where S(x, y) := L(x, y)− L(y, x) ∈
Der U, A(x, y) := L(x, y) + L(y, x)

∈ Anti−Der U, this case is ε = −1, δ = 1.

Example d) Second, we study the case of

g−1 = U = Mat(2, 3;Φ). In this case, g−1 is a

GJTS of 2nd order (i.e., (−1, 1)-FKTS) with

dim {K(x, y)}span = 1 with respect to the

product

{xyz} = xtyz + ztyx− ztxy, ∀ x, y, z ∈ g−1.

By straightforward calculations, it can be



shown that the standard embedding Lie

algebra L(U) = g is a 5-graded B3-type Lie

algebra with g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 and

dim g−2 = dim g2 = dim {K(x, y)}span = 1.

Thus, we have

g0 = Der U ⊕Anti−Der U ∼= A1 ⊕A1 ⊕ΦH,

where H =

(
Id 0
0 −Id

)
.

Furthermore, we obtain a LTS T (U) of



dim T (U) = dim (g−1 ⊕ g1) = 12,

Der(g−1⊕g1) = g−2⊕g0⊕g2 = A1⊕A1⊕A1
∼= Der T (U).

Also, in this case, we note that

T (U) = L(U)/Der T (U) =

g/(g−2 ⊕ g0 ⊕ g2)(= g−1 ⊕ g1) is the tangent

space of a quaternion symmetric space of

dimension 12, since T (U) is a Lie triple

system associated with g−1.

Example e) Third, we study the case of

g−1 = U = Mat(1, 3;Φ). In this case, g−1 is a



GJTS of 2nd order (i.e., (−1, 1)-FKTS) with

respect to the product

{xyz} = xtyz + ztyx− ytxz,

K(x, y)z = {xzy} − {yzx}, ∀ x, y, z ∈ g−1.

By straightforward calculations, the standard

embedding Lie algebra L(U) = g can be

shown to be a 5-graded B3-type Lie algebra

with g = g−2 ⊕ · · · ⊕ g2 and

dim g−2 = dim g2 = 3. Thus, we have



g−2 = {K(x, y)}span = Alt(3, 3;Φ).

Furthermore, we obtain a LTS T (U) of

dim T (U) = dim (g−1 ⊕ g1) = 6,

Der(g−1⊕g1) = g−2⊕g0⊕g2 = A3
∼= Der T (U).

This case g−2 = {K(x, y)}span = k has the

structure of a JTS (cf. section 2).

Remark We remark that the cases (a)and (b)

(resp. (c),(d),(e)) are δ = −1 (resp. δ = 1).



Remark For the root system

∆ = {α1, α2, α3, α1 + α2, α1 + α2 + α3, α2 +

α3, α1+α2+2α3, α2+2α3, α1+2α2+2α3}and
the highest root −ρ = {α1 + 2α2 + 2α3} of the

simple Lie algebra B3, the case of (c) means

that g−1 = {α1, α1 + α2, α1 + α2 + α3, α1 +

α2 + 2α3, α1 + 2α2 + 2α3} and g−2 = {0}, the
case of (d) means that

g−1 = {α2, α1 + α2, α2 + α3, α1 + α2 +

α3, α1 + α2 + α3, α2 + 2α3} and g−2 = {−ρ},
the case of (e) means that



g−1 = {α3, α1 + α2 + α3, α2 + α3} and

g−2 = {α1+α2+2α3, α2+2α3, α1+2α2+2α3}.



4 Mathematical physics Remarks

In this section, we give several references of

mathematical physics in our works.

We note that there are applications toward

the Yang-Baxter equations associated with

triple systems ([26], [39], [57]) and also toward

the field theory associated with Hermitian

triple systems ([37], [38]). For other

mathematical physics, it seems that the books

([28], [33]) are useful.



5 History from a certain personal

viewpoint

For a mathematical history, in particular for

Jordan rivers, we describe belows:

This brief history (with respect to

nonassociative algebras) is a story from

author’s personal aspect (judgement). Triple

systems (ternary algebras) have first been

appeared from Prof. N. Jacobson and



continued by Profs. O. Loos, K. Meyberg and

E. Neher of students of Prof. M. Koecher in

Germany, also certain triple systems

associated with the geometry of 56

dimensional due to Prof. Freudenthal have

been studied by Prof. J. Faulkner (resp. K.

Meyberg) of the student of Prof. N. Jacobson

(resp. Prof. M. Koecher ).

On the other hand, there is a history;

H. Freudenthal (Netherlands) −− >K.

Yamaguti (Japan) or I. L. Kantor (Russian



and Sweden, he was born in Belarus) −− >

Author (N. Kamiya) −− > D. Mondoc (but

these arrows are no students), however, Dr.

Mondoc is only a student of Prof. Kantor in

Sweden.

Profs. O. Loos and E. Neher in the student of

Prof. M. Koecher in Germany are working in

Jordan triple systems and Jordan pairs. Profs.

Kantor, Yamaguti, S. Okubo and author(N.

Kamiya) are studying in their generalizations,

for example, refer to N. Kamiya and S. Okubo



”Representation of (α, β, γ) triple systems,”,

Linear and Multilinear Algebras, 58 no.5-6

(2010) 617-643. This history is a story

whithout using concept of root systems and

Cartan matrix in Lie algebras, in particular, is

a study for triple systems.

Note that there are a lot of mathematician in

nonassociative algebras (for Lie algebras), but

a little groups in triple systems or Jordan

algebras. For example, Profs. E. Zelmanov,

K. McCrimmon, B. Allison, V. Kac, I.



Shestakov, H. Petersson, M. Racine, H.

Asano, I. Satake, M. C. Myung, A. Elduque,

C. Martinez, S. Gonz̀alez, S. Okubo and

author, may be, only a few. Furthermore in

addition, the book ”A Taste of Jordan

Algebras” (Springer, 2003) written by Prof. K.

McCrimmon of a student in N. Jacobson is

described about a history of the Jordan river.

It here emphasize that this historical survey of

certain Jordan algebras until the end of the

20th century and the beginning of 21th



century is my (author) aspect (viewpoint). In

addition to above river, for a certain example,

for our imaginative illustrations with respect

to a generalization of numbers;

(♯) R → C → H → O(octonion)

→ H3(O)(Jordan algebra of 27 dim) →

M(H3(O))(metasymplectic geometry of 56 dim) →

T(H3(O))(symmetric space of 112 dim) →



E8(exceptional simple Lie algebra of 248 dim).

On the other hand, there is other river also,

(♯♯) O → C⊗O, H⊗O and O⊗O

(Freudenthal′s magic square) →

T(O⊗O)(symmetric space of128 dim)

→ E8.

For another way, there is a river of Prof. Tits

(called Tits’s construction) as follows.



(♯♯♯) The case A = A0 ⊗ J0 ; (with

dim A = 7× 26, dim Der (A) = 66), where

the base field Φ is an algebraically closed field

of characteristic 0.

L(A) = Der(A)⊕A ∼= E8, Der(A) =

DerA⊕DerJ ∼= G2 ⊕ F4 =< D(X,Y ) >span .

Here A0 denote {x ∈ O|trace x = 0} and

J0 = {x ∈ H3(O)|Trace x = 0}. For the
product of A, X ◦ Y = (a ∗ b)⊗ (x ∗ y) and
with respect to the Lie product of L(A),

[X,Y ] = D(X,Y ) +X ◦ Y , then the vector



space (A, ◦) has an algebraic structure of

satisfying

D(X ◦ Y,Z) +D(Y ◦Z,X) +D(Z ◦X,Y ) = 0,

where X,Y, Z ∈ A ([19] and see the earlier

references therin).

If we set J = H3(O) → H3(A) (= B), then we

have the following table;

\ dimB = 6 dimB = 9 dimB = 15 dimB = 27

dimA = 1 A1 A2 C3 F4
dimA = 2 A2 A2 ⊕ A2 A5 E6
dimA = 4 C3 A5 D6 E7
dimA = 8 F4 E6 E7 E8



Here note that L(A)/(G2 ⊕ F4) is a reductive

homogeneous space with 182 dimension.

It seems that there are several researchers

group’s tradition for these study and

furthermore, for a nonassociative world of

21th century, Spanish, Portuguese and middle

Europe scholars groups will glow with respect

to the study (may be, Prof. Elduque’s group

mainly).

For algebraic structures of nonassociative

subject (AMS classification 17) related with



geometry, about 20th century, roughly

speaking, we may describe as follows, for

example (in my opinion);

Jordan algebras researchers (E. Artin

origin),

Lie algebras researchers (N. Jacobson

origin).

In summarizing about Jordan algebras or

triple systems, we have the following diagrams

(a generalization of complex and quaternionic

numbers):



octonion, pseudo octonion algebras and triple

systems =⇒

Jordan algebras +Lie (super)algebras

+symmetric composition algebras

=⇒mathematical algebras

(author’s new phrase)

In final comments (although they had

described in the introduction), also we

emphasize that nonassociative algebras are



rich in algebraic structures, and they provide

important common ground for various

branches of mathematics, not only pure

algebra and mathematical physics (for

example, Pierce decompositions, Yang-Baxter

equations and quark theory), but also analysis

(Jordan C∗ algebras or JB∗ triple), topology

(racks or quandles), and geometries (

generalized symmetric spaces, convex cones or

bounded symmetric domaines, in particular).

Hence, in future aspect, it seems that the



triple systems (or ternary product) without

using unit elements are useful concept for

several subjects of sciences as well as the

situation of symmetric spaces.

For a recent book of Springer Pub. (Proc.

Math.and Stastics, vol. 427, (2023)), it seems

that there is a lot of study in nonassociative

world.



6 Geometric structures
6.1 A generalized curvature and torsion

tensors

Let L = L(U(ε, δ)) = L(W,W )⊕W be the

Lie algebra defined from a δ LTS as in the

section one, that is, the δ-LTS

W = T (ε, δ) = L−1 ⊕ L1 is induced from

L−1 = U(ε, δ) (as L−1 has the structure of a

(ε, δ)-FKTS).

We now introduce a generalization of



covariant derivative ▽ in differential geometry

as follows; ▽ : L → End L defined by

▽XY = [X,Y ] = −δ[Y,X],

▽X [Y, Z] = [Y ZX] = −δ[ZY X],

▽[X,Y ]Z = −[XY Z] = −δ[Y XZ],

▽[X,Y ][V, Z] = [[V, Z][X,Y ]] =

−δ[[X,Y ][V,Z]],

for any X,Y, Z ∈ W.

Furtheremore, a generalized curvature tensor



defined by

Cδ(X,Y ) = ▽X ▽Y −δ▽Y ▽X −▽[X,Y ] (11)

is identically zero, i.e., Cδ(X,Y ) = 0 in L, for

any X,Y ∈ W. Indeed, we demonstrate the

proof below.

First we calculate

Cδ(X,Y )Z = (▽X▽Y −δ▽Y ▽X)Z−▽[X,Y ]Z

= ▽X [Y, Z]− δ ▽Y [X,Z] + [XY Z]



= [Y ZX]− δ[XZY ] + [XY Z]

= [Y ZX] + [ZXY ] + [XY Z] = 0.

Second, it follow

Cδ(X,Y )[V, Z] =

(▽X ▽Y −δ ▽Y ▽X)[V, Z]−▽[X,Y ][V,Z]

= [X, [V ZY ]]−δ[Y, [V ZX]]+δ[[X,Y ], [V, Z]] =

[X,L(V,Z)Y ]−δ[Y, L(V, Z)X]−L(V, Z)[X,Y ] = 0



(by [Y, L(V, Z)X] = −δ[L(V,Z)X,Y ] and

[[X,Y ], [V, Z]] = −δ[[V, Z], [X,Y ]])

for any X,Y, Z, V ∈ T (ε, δ).

However a generalized torsion tensor defined

by

Sδ(X,Y ) = ▽XY − δ ▽Y X − [X,Y ] (12)

is not zero, since it gives

Sδ(X,Y ) = [X,Y ]− δ[Y,X]− [X,Y ] = [X,Y ].

In final comments of this section, for δ-LTS

W = T (ε, δ), we recall the Nijenhuis operator



in the section one;

N(X,Y ) =

[JX, JY ] + J2[X,Y ]− J [JX, Y ]− J [X,JY ],

where J is an almost complex structure on W ,

this concept (the case of δ = 1) is appeared in

([36]), hence we may consider a generalization

with respect to the super symmetric space

(the case of δ = −1).



If we set J =

( √
−1 0

0 −
√
−1

)
, or

J =

(
0 1

1 0

)
, then we have

J2 = −Id, or J2 = Id respectively, and it

seems that there is a twisted or a straight

(para complex) property in the sence of W.

Bertram.



6.2 magic square table of exceptional

simple Lie algebras

Following ([34],[35]), we consider the simple

Lie algebras associated with normal triality

algebras A, that is, the construction of

5-graded exceptional Lie algebras

L(A) = g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 and

g−1 = A. Here we denote that the base field is

an algebraically closed field F of characteristic

0.



I) A = O⊗O (tensor product case,

Der O ∼= G2, dim A = 64,

dim g−2 = dim g2 = 14).

For subalgebras of A, if we use the notation of

A = A1 ⊗A2, dim A1, dim A2, then the Lie

algebras obtained from their subalgebras are

following:

L(A) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ∼= E8,

g−2 ⊕ g0 ⊕ g2 ∼= D8, A = g−1



dimA2\dimA1 1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ⊕A2 A5 E6

4 C3 A5 D6 E7

8 F4 E6 E7 E8

For this case’s E8, considering the Extended

Dynkin diagram, we have

g−1 ⊕ g1 ∼= L(A)/(g−2 ⊕ g0 ⊕ g2) = E8/D8

with dim (g−1 ⊕ g1)=128;



⊚− ◦ − ◦ − ◦ − ◦ − ◦ − ◦− ◦ ,

|
◦

◦ omitted ∼= D8, and ⊚ is highest root.

II) A =

(
α a

b β

)
(balanced case,

dim A = 56, dim g−2 = dim g2 = 1), where

a, b ∈ H3(O) (exceptional Jordan algebra

with 27 dimension) and α, β ∈ F . The Lie

algebra constructed from this algebra A is the



following.

L(A) ∼= E8, g−2 ⊕ g0 ⊕ g2 ∼= E7 ⊕A1,

g0 ∼= E7 ⊕ gl(1), A = g−1.

To change the notation

H3(O) → H3(A)(= B), here A is a Hurwitz

algebras over F .

∀
(

α a

b β

)
∈
(

F B

B F

)
= A, with respect

to the dimB, Lie algebras L(A) obtained from

B are the following.



dimB 1 6 9 15 27

dimA 4 14 20 32 56

dimL(A) 14 52 78 133 248

L(A) G2 F4 E6 E7 E8

For this case’s E8, considering the Extended

Dynkin diagram, we have

g−1⊕g1 ∼= L(A)/(g−2⊕g0⊕g2) = E8/(A1⊕E7)

with dim g−1 ⊕ g1=112;



⊚− ◦ − ◦ − ◦ − ◦ − ◦ − ◦ −◦, ◦ omitted

|
◦

∼= A1 ⊕ E7.

Remark This type construction of type II

with dim A = 56 has been first studied by H.

Freudenthal (called a metasymmetric

geometry equipped P ×Q and {P,Q}’s
notations). And this concept is characterized

by a triple system (or a ternary algebra)

called a generalized Zorn’s vector matrix



([13]-[16],[18],[35] the references of therein).

6.3 bisymmetric spaces associated with

exceptional simple Lie algebras

Following the books due to O. Loos or W.

Bertram with respect to symmetric spaces, we

have associated to a symmetric space

M = G/H a Lie triple system T (as the

tangent space of the symmetric space is a Lie

triple system).



We consider a concept of bisymmetric space

(Bα, Bβ , Bγ , Bδ) in Lie triple systems pair

defined as follows:
(I) dim Bδ/dim Bγ = dim Bγ/dim Bβ =

dim Bβ/dim Bα = 2, and

Bα < Bβ < Bγ < Bδ

as Lie triple subsystem’s series of the Lie

triple system g−1 ⊕ g1 of 5-graded Lie algebra

g = L(A) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2



associated the normal triality algebra A = g−1

and Der (g−1 ⊕ g1) ∼= g−2 ⊕ g0 ⊕ g2.

From § 6.2 (I) type, we obtain bisymmetric

space’s series of type (I).　It is said to be a

type (I) bisymmetric space.

F4/B4 < E6/(D5⊕gl(1)) < E7/(D6⊕A1) < E8/D8

dimensin of bisymmetric spaces of type (I);

16, 32, 64, 128 respectively.



With respect to Extended Dynkin diagrams

(symmetric spaces) of E7, E6, F4;

◦− ◦ − ◦ − ◦ − ◦ − ◦ −⊚, ◦ omitted

|
◦

∼= D6 ⊕A1, and ⊚ is highest root.

◦ − ◦ − ◦ − ◦ − ◦ , ◦ omitted

|
◦
|
⊚



∼= D5 ⊕ gl(1), and ⊚ is highest root.

⊚ − ◦ −◦ => ◦− ◦ , ◦ omitted
∼= B4, and ⊚ is highest root.

From § 6.2 (II) type, we may define the same

concept to type (I) as follows.

(II) (dim Bδ + 16)/dim Bγ =

(dim Bγ + 16)/dim Bβ =

(dim Bβ + 16)/dim Bα = 2,



and Bα < Bβ < Bγ < Bδ

It is said to be a type(II) bisymmetric space.

F4/(C3⊕A1) < E6/(A5⊕A1) < E7/(D6⊕A1)

< E8/(E7 ⊕A1)

and the dimension of bisymmetric spaces of

type (II) ;

28, 40, 64, 112 respectively.



With respect to Extended Dynkin diagrams

(symmetric spaces) type (II) of E7, E6, F4;

◦−◦− ◦ − ◦ − ◦ − ◦ −⊚, ◦ omitted

|
◦

∼= D6 ⊕A1, and ⊚ is highest root.

◦ − ◦ − ◦ − ◦ − ◦, ◦ omitted

|
◦
|
⊚



∼= A5 ⊕A1, and ⊚ is highest root.

⊚ − ◦ −◦ => ◦− ◦, ◦ omitted ∼= C3 ⊕A1.

and ⊚ is highest root.

Here A1, A5, B4, C3, D5, D6 mean classical

simple Lie algebras.

Remark For type (II), we consider with

L(A)/g0 vector spaces series;

F4/(C3⊕gl(1)) < E6/(A5⊕gl(1)) < E7/(D6⊕gl(1))

< E8/(E7 ⊕ gl(1))



(dim Bδ + 18)/dim Bγ =

(dim Bγ + 18)/dim Bβ =

(dim Bβ + 18)/dim Bα = 2,

and Bα < Bβ < Bγ < Bδ.

This bivector spaces series have dimensions

30, 42, 66, 114 respectively, (may be, it seems

that there is a certain algebraic structure,

perhaps, to be said a bireductive

homogeneous space).

Concluding Remark One of fundamntal our

philosophy is to study the construction of



5-graded Lie (super)algebras

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, satisfying

[gi, gj ] ⊆ gi+jwithout using roots systems and

Cartan matrix.

In the end of this paper, it seems that it is

useful to refer a Springer publisher book

(Math and Statistic series, Lecture notes)

with respect to the Proceeding of conferences

of Nonassociative algebras and its applications

in Coimbra University (2022, Portgal).
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