
...



i. Program

.

i

.



.

ii

PLENARY SPEAKERS 
 
Speaker: Daniel B Szyld, Temple University 
 
Title:  Matrices with Perron-Frobenius Properties 
 
Abstract: Non-nilpotent nonnegative matrices have a positive dominant eigenvalue that 
corresponds to a nonnegative eigenvector. This property is called the Perron-Frobenius property. General 
matrices with a Perron-Frobenius property are studied, i.e., matrices which have a positive dominant 
eigenvalue, with the corresponding eigenvector being positive or non-negative. We concentrate on 
matrices which are not necessarily non-negative, and whose powers are not necessarily non-negative. 
Several characterizations of matrices having Perron-Frobenius properties are presented, including some 
depending on spectral, combinatorial, and geometric characteristics. We also study generalizations of M-
matrices, i.e., matrices of the form sI − B with B having a Perron-Frobenius property, and whose spectral 
radius is no larger than s.  
 
Speaker: Yasuyuki Hirano, Hiroshima Institute of Technology 
 
Title:  On Finite Rings and Their Groups of Units 
 
Abstract: A finite ring is an associative ring consisting of only finitely many elements. Let R denote a 
finite ring with identity. The group of units in R is denoted by R×.  For a set S, we denote the number of 
elements in S by |S|.  In this paper, we analyze the structure of a finite ring R in relation to the number |R| 
/ |R×|.  We also study conditions for R× to be a simple group. 

 
Speaker: John A. Beachy, Northern Illinois University 
 
Title:  Universal localization at semiprime Goldie ideals 
 
Abstract: My talk will mostly be expository, in an effort to call attention to the method of 
noncommutative localization introduced by P. M. Cohn (in 1973). Given a prime ideal P of a Noetherian 
ring R, he constructed the ring universal with respect to inverting the set of matrices inverted by the 
canonical mapping from 
R to the classical ring of quotients of R/P. This ring always exists, but the definition via a universal 
property seems to only provide information about the “top” of the localized ring, while it remains difficult 
to even determine the kernel of the localizing homomorphism. I would note that Cohn’s construction 
reduces to the Ore localization when the prime ideal is localizable, and it turns out to be closely related to 
the localization defined earlier by Alfred Goldie (in 1967). On the other hand, it seems to be on the 
opposite end of some spectrum involving the torsion theoretic localization. There are many “known” 
unknowns, along with what is surely a large number of “unknown” unknowns. I still have hope that 
Cohn’s method can provide a language that will help in extending commutative results involving 
localization to the noncommutative case. 
 
Speaker: Noriaki Kamiya, Affiliation: University of Aizu  

Title:  On certain algebraic structures associated with Lie (super)algebras 

Abstract: This talk is to deal with a certain survey and to several examples of triple systems, furthermore 
to describe a history of Jordan river in nonassociative algebras from the author’s viewpoint. Also, we will 
speak a correspondence with Lie (or Jordan) structures and symmetric spaces with complex structure. 
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Speaker: Steven H. Weintraub, Lehigh University 
 
Title:  Reverse Orthogonal Polynomials  
 
Abstract: Let P  be the vector space of all polynomials equipped with an inner product. We may apply 

the Gram-Schmidt procedure to the ordered basis 2{1,  ,  ,...}.x x of P, with suitable normalization, to 
obtain orthogonal polynomials 0 1 2{ ( ),  ( ),  ( ),...}.F x F x F x This is a classical construction. Instead, for any 

fixed n, we begin with the vector space Pn of polynomials of degree at most n, with the restriction of the 

same inner product, and apply the Gram-Schmidt procedure to the ordered basis 1{ , ,  ...,1}n nx x − of Pn, 

with suitable normalization, to obtain orthogonal polynomials 1 0{ ( ),  ( ),  ...,  ( )}.
n n n

n nF x F x F x
← ← ←

− Since we are 
applying the Gram-Schmidt procedure in reverse order, we call these reverse orthogonal polynomials. We 
discuss the reverse orthogonal polynomials, with particular emphasis on the reverse Legendre 
polynomials and the reverse Chebyshev polynomials of the first and second kinds. 
 
 
Participants 
 
Alvarez, Angelynn, ERAU - Prescott 
Barnes, Cesiley, Illinois State University 
Beachy, John, Northern Illinois University 
Bowling, Andrew, University of Minnesota - Duluth 
Briggs, Christopher, ERAU - Prescott 
Chentouf, Anas, MIT 
Chuluunbaatar, Solongo, National Louis University 
Hirano, Yasuyuki, Hiroshima Institute of Technology 
Houssou, Kodjo, University of Minnesota, Twin Cities 
Kirmani, Syed, University of Northern Iowa 
Mupasiri, Doug, University of Northern Iowa 
Mututhanthrige Perera, Sirani, ERAU - Daytona Beach 
Nishinaka, Tsunekazu, University of Hyogo 
Noriaki, Kamiya, Aizu University  
Obeahon, Ehiareshan, Illinois State University 
Prophet, Mike, University of Northern Iowa 
Saadoudi, Noussaiba. KANSAS University 
Seto, Shoo, California State University, Fullerton 
Shaw, Douglas, University of Northern Iowa 
Stager, Benjamin, Tulane University 
Szyld, Daniel, Temple University 
Tsutsui, Hisaya, ERAU - Prescott 
Watanabe, Tatsunari, ERAU - Prescott 
Weintraub, Steven, Lehigh University 
Wood, William, University of Northern Iowa 
Xie, Weiguo, University of Minnesota - Duluth 
Zufelt, Mitchell, University of Chicago 
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Schedule 

Friday, August 11, 2023 

Starting time Title of the talk and presenter 

9:15 am  
Welcome: Jose Herrera, Provost, University of Northern Iowa (UNI) 
Opening Remarks: Doug Mupasiri, Head, UNI Department of Mathematics 

9:30am – 10:10am  
Title: Harris Graphs – an introduction 
Speaker: Douglas Shaw (UNI) 

10:25am – 11:05am 
Title: The Geometry of the Hyperelliptic Torelli Group                                                               
Speaker: Tatsunari Watanabe (ERAU-Prescott) 

             Conference Lunch 

1:15pm – 2:15pm  
Plenary Talk 1  
Title: Matrices with Perron-Frobenius Properties 
Speaker: Daniel Szyld (Temple University)  

2:30pm – 3:10pm 
Title: Dehn Invariant Zero Tetrahedra                                                                                                                                     
Speaker: Anas Chentouf (MIT) 

 Tea/Coffee Break 

3:50 pm - 4:30pm 
Title: A Low-Cost Algorithm to Determine Orbital Trajectories within Cislunar Region                
Speaker: Sirani Perera (ERAU – Daytona Beach) 

4:45pm – 5:15pm 
Title: Uniform exponential growth of Lie algebras and their associated universal enveloping algebras 
Speaker: Christopher Briggs (ERAU, Prescott) – via Zoom 

 Saturday, August 12, 2023 

9:20am –10:00am  Title: Geometric Analysis Under Ricci Curvature Bounds 
Speaker: Shoo Seto (California State University, Fullerton)   

10:15am – 10:55am Title: Rotation Operations on the Errera Map and its Variations – Part 1                                                   
Speaker: Weiguo Xie (University of Minnesota Duluth) 

11:10am – 12:10pm 
Plenary Talk 2 
Title: On Finite Rings and Their Groups of Units 
Speaker: Yasuyuki Hirano (Hiroshima Institute of Technology, Japan) 

 Conference Lunch 

 1:15pm – 1:55pm             Title: DSR-graphs and group algebras                                                                                               
Speaker: Tsunekazu Nishinaka (University of Hyogo, Japan) 

.
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2:10pm – 2:50pm  Title: Introduction to Fully Prime Rings 
Speaker: Hisaya Tsutsui (ERAU-Prescott) 

 Tea/Coffee Break 

3:20pm – 4:20pm 
Plenary Talk 3 
Title: Universal localization at semiprime Goldie ideals 
Speaker: John Beachy (Northern Illinois University) 

4:35pm – 5:35pm  

Poster Session: 
• Ehiareshan Obeason (Illinoi State University) 
• Kodjo Houssou (University of Minnesota Twin City) 
• Cesiley Barnes (Illinoi State University) 

 
 
 7:00pm -  Conference Dinner 
Venue: George's Local, 108 E 4th St, Cedar Falls, IA 50613 

Sunday, August 13, 2023 

9:30am –10:10am  Title: Rotation Operations on the Errera Map and its Variations – Part 2                                                                   
Speaker: Andrew Bowling (University of Minnesota Duluth) 

11:20am – 12:20pm 
Plenary Talk 4 
Title: On certain algebraic structures associated with Lie (super)algebras 
Speaker: Noriaki Kamiya (University of Aizu, Japan) 

 Conference Lunch 

1:15pm – 1:55pm 

Title: Semi-Implicit Time Integration for Partial Differential Equations and The Method of 
Regularized  
Stokeslets 
Speaker: Benjamin Stager (Tulane University) – via Zoom 

2:10pm – 3:10pm 
Plenary Talk 5 
Title: Reverse Orthogonal Polynomials 
Speaker: Steven H. Weintraub (Lehigh University) 

 Closing Remark by organizers.  
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iii. Foreword

foreword

The International Conference for the Exchange of Mathematical Ideas was started by
three founding organizers: Douglas Mupasiri of University of Northern Iowa, Keith
Mellinger of University of Mary Washington, and Hisaya Tsutsui of Embry-Riddle Aero-
nautical University.The first conference took place at Embry-Riddle Aeronautical Uni-
versity’s Prescott campus on May 26, 2012. It had an international audience of 21
participants representing diverse mathematical specialties ranging from noncommutative
ring theory to computability theory, cryptography to topology, algebraic number theory
to operator theory.

The ethos of the conference is grounded on recognition of the surprising connections that
arise between distant fields. That by getting together to describe their research to an
audience of non-specialists, researchers often gain new perspective on their own work
and find inspiration in the work of others. The EMI is intended to provide a venue for
mathematicians to interact in this way. Indeed, collaborations across disciplines sparked
at the Exchange have resulted in research productivity, including peer-review journal
publications.

Most of all, even though mathematics can be done alone, and often is the product of
individual effort, it gains meaning only when shared. We gather to pay homage to this
communal aspect of mathematics. We dedicate these proceedings to those who have been
with us in the past and those who will join us in the future.

Participants of the 2023 meeting were invited to submit papers to the proceedings. The
seven selected submissions are published here.
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2 THE GEOMETRY OF THE HYPERELLIPTIC TORELLI GROUP

Figure 2. Another deformation of a mug to the torus

To be more precise, by a deformation, we mean a diffeomorphism, which is a smooth invertible
map between topological surfaces which admits a smooth inverse. The mapping class group
of an oriented topological surface S is the group of isotopy classes of orientation-preserving
diffeomorphisms of S. It has been studied extensively in many areas of mathematics such as
topology, geometry, algebraic geometry, number theory, and etc. A hyperelliptic involution σ
of S is an orientation-preserving diffeomorphism of order 2. The hyperelliptic mapping class
group of S is the centralizer of the isotopy class of σ in the mapping class group, and the
symmetry produced by σ should be captured in its group structure.

The mapping class group acts on the fundamental group of S, which yields the symplectic
representation. The kernel of the representation is called the Torelli group. The intersection of
the Torelli group and the hyperelliptic mapping class group is called the hyperelliptic Torelli
group. In this notes, we will introduce the generators of the hyperelliptic mapping class group
and the hyperelliptic Torelli group, and some of open problems in the study of these groups.

2. Topology of curves

A complex curve C is a smooth projective irreducible variety of dimension one defined over
the complex numbers C. The curve C of genus g ≥ 0 is diffeomorphic to a compact oriented
topological surface, denoted by Sg, with g holes. Fix a point p in C. The fundamental group
π1(C, p) of S with base point p is the group of homotopy classes of loops in C based at p. A
different choice of base point q yields a natural isomorphism

π1(C, p) ∼= π1(C, q),

which is unique up to a conjugation action by an element of π1(C, p). Therefore, we omit the
base point from the notation. Let α1, β1, . . . , αg, βg be the standard generating set for π1(C).
It has a minimal presentation given by

π1(C) =

〈
α1, β1, . . . , αg, βg

∣∣∣∣∣∣
g∏

j=1

[αj , βj ]

〉
.

The natural map π1(C) → H1(C,Z) induces an isomorphism from the abelianization of π1(C)
to the homology group H1(C,Z). Denote the images of αj and βj in H1(C,Z) by aj and bj for
j = 1, . . . , g. The abelianization H1(C,Z) is a free abelian group of rank 2g.

.
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THE GEOMETRY OF THE HYPERELLIPTIC TORELLI GROUP 3

2.1. Symplectic group. The group of symplectic matrices of size 2g × 2g over Z is denoted
by Sp(2g;Z). It is defined as the group of invertible 2g-by-2g matrices M with entries in Z
satisfying

MTJM = J,

where J =

[
0 Ig

−Ig 0

]
and Ig is the g-by-g identity matrix.

The group H := H1(C,Z) is equipped with the algebraic intersection paring ⟨ , ⟩. The pairing
⟨ , ⟩ is a non-degenerate bilinear alternating form, and H is a symplectic space of rank 2g. Fix a
symplectic basis a1, . . . , ag, b1, . . . , bg for H. Then there is an isomorphism of the automorphism
of H preserving ⟨ , ⟩ with Sp(2g;Z):

Aut(H, ⟨ , ⟩) ∼= Sp(2g;Z).

3. Mapping Class Groups

Let Sg be a compact oriented surface of genus g. Denote the punctured surface obtained
from Sg by removing n distinct points by Sg,n. The mapping class group of Sg,n, denoted by
Γg,n, is defined as the group of isotopy classes of orientation-preserving diffeomorphisms of Sg,n

fixing the punctures pointwise. The n punctures are often viewed as marked points on Sg as
well. The group Γg,n is independent of a choice of the n points removed by the classification
of surfaces. When n = 0, we simply denote Γg,0 by Γg. In this notes, we always assume that
2g − 2 + n > 0.

3.1. Dehn twists. When n = 0, the group Γg is finitely generated by the isotopy classes of
a certain type of diffeomorphisms called Dehn twists. A Dehn twist Td about a simple closed
curve d in Sg is a left-twist map about d, fixing the boundary of a tubular neighborhood N of
d. More precisely, let A be the cylinder oriented outward given by S1 × [0, 1] with coordinates
θ and t, respectively. Let T : A → A be the twisting map sending (θ, t) 7→ (θ + 2πt, t). Note
that T is an orientation-preserving diffeomorphism fixing the boundary of A pointwise. Choose
an orientation-preserving diffeomorphism ψ : A→ N . Define a map Td : Sg → Sg by sending

x 7→

{
ψ ◦ T ◦ ψ−1(x) if x is in N ,

x otherwise.

Figure 3. A Dehn twist

.
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A simple closed curve d in Sg is said to be separating if the surface obtained by cutting Sg

along d is disconnected. Otherwise, it is said to be nonseparating. When g = 1, Γg is generated
by the Dehn twists about α1 and β1 in the torus. For g ≥ 2, the mapping class group Γg

is finitely generated by the isotopy classes of Dehn twists about 2g + 1 nonseparating simple
closed curves in Sg ([3, Thm. 4.14]). Furthermore, it is also finitely presented [3, Thm. 5.3].

3.2. Symplectic representation of Γg,n. Fix p in Sg. The mapping class group Γg,n acts on
π1(Sg), and furthermore this action induces an action on H, preserving the intersection pairing
⟨ , ⟩. Hence we obtain a homomorphsim

ρg,n : Γg,n → Sp(2g;Z).

The homomorphism ρg,n is surjective for g ≥ 1 [3, Thm. 6.4].

3.3. The Birman exact sequences. There is a natural injection Push : π1(Sg) ↪→ Γg,1 called
the push map:

Figure 4. The point-pushing map Push

Combining with the forgetful map Forget : Γg,1 → Γg, we obtain the Birman exact sequence:

1 → π1(Sg) → Γg,1 → Γg → 1.

The Birman exact sequence extends to the puncture case: the sequence

1 → π1(Sg,n) → Γg,n+1 → Γg,n → 1

is exact.

Theorem 3.1. [3, Cor. 5.11] If g ≥ 2, the Birman exact sequence does not split.

It is well known that the punctured Birman exact sequence does not split either. For example,
it follows from [12, Theorem 1].

3.4. Torelli group. The Torelli group is defined to be the kernel of the symplectic represen-
tation ρg,n: Tg,n = ker ρg,n:

1 → Tg,n → Γg,n
ρg,n→ Sp(2g;Z) → 1.

It is an infinite-index subgroup of Γg,n. Therefore, there is no reason to believe that it carries
the basic properties of Γg,n.

.
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4. Hyperelliptic Mapping Class Groups

A hyperelliptic involution σ : Sg → Sg is an orientation preserving diffeomorphism of order
2 of Sg fixing exactly 2g + 2 points.

Figure 5. A hyperelliptic involution of Sg, rotation by π

Fix a hyperelliptic involution σ of Sg.

Definition 4.1. The hyperelliptic mapping class group ∆g of Sg is defined to be

∆g:= the centralizer of the isotopy class of σ in Γg

The hyperelliptic mapping class group ∆g,n of type (g, n) is defined to be

∆g,n := ∆g ×Γg
Γg,n

4.1. Generators. A simple closed curve γ is said to be symmetric if σ(γ) = γ. The hyperel-
liptic mapping class group ∆g can be generated by the Dehn twists about 2g + 1 symmetric
nonseparating simple closed curves:

Figure 6. Nonseparating symmetric curves generating generating ∆g

4.2. Hyperelliptic Torelli group.

Definition 4.2. The hyperelliptic Torelli group T∆g is defined to be the intersection of ∆g

with Tg:
T∆g := ∆g ∩ Tg.

Theorem 4.3 (Brendle-Margalit-Putman). If g ≥ 2, then T∆g is generated by Dehn twists
about symmetric separating curves.

.
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Remark 4.4. When g = 2, any two simple separating curves intersect at least 4 times (see
Figure 7). On the other hand, when g ≥ 3, there are disjoint symmetric separating curves as
in Figure 8, which produce commuting Dehn twists in T∆g.

Figure 7. Symmetric separating curves in S2

Figure 8. Symmetric separating curves in S3

4.3. Open problems. Wile the Torelli group Tg is known to be finitely generated for g ≥ 3,
it is still an open question for the hyperelliptic Torelli group T∆g:

Is T∆g finitely generated for g ≥ 3?

When g = 2, Mess proved in [7] that T∆2 = T2 is an infinitely generated free group.
Similarly, the finite presentability of T∆g is not known:

Is T∆g finitely presentable for g ≥ 4?

From the cohomological analysis of T∆g done by Brendle, Childers, and Margalit in [2], it is
known that T∆3 is not finitely presentable.

Another important question is the abelianization of T∆g:

Determine H1(T∆g).

Johnson computed in [6] the abelianization of Tg, and the result has played an important role
in many different areas of algebraic geometry such as the study of rational points of universal
curves (see [4], [11]). The analogous result for the hyperelliptic Torelli group should be an
important tool for the study of the universal hyperelliptic curve, which is the restriction of the
universal curve to the hyperelliptic locus in the moduli of curves. For example, the author
studies the sections of the universal hyperelliptic curves in [10] using the relative completion of
the hyperelliptic mapping class groups. The structure of the completion has a deep connection
with the abelianization of the hyperelliptic Torelli group, and it can be used to study the
geometric properties of the universal curves.

.
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2 SHOO SETO

We imagine taking a sheet of paper and slightly folding it to construct a parabolic cylinder. This
transformation leaves the distance along the surface of two points the same. From this we see that
it is impossible to make a perfect world map onto a flat sheet of paper.

The principal curvatures do not generalize well to general n-dimensional spaces since we need
a notion of a “normal” direction. For embedded hypersurfaces Mn ⊂ Rn+1, this is possible
but in general we are not. Nevertheless, the Gauss curvature does generalize to n-dimensional
Riemannian manifolds. On Riemannian manifolds, at each point we have a vector space of possible
directions, the tangent space. This gives us (in a rough sense) a way to take directional derivatives
of various tensor quantities, including the (tangent) vector fields themselves. With this, we can
define a notion of curvature in the following way. Let X(M) be the space of vector fields on M .

Definition 1.1. Define the (3, 1)-Riemann Curvature Tensor R : X(M)×X(M)×X(M)→ X(M)

R(X, Y, Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

= [∇X ,∇Y ]Z −∇[X,Y ]Z

where [X, Y ] = XY − Y X is the Lie bracket.

Informally, the curvature tensor measures the non-commutativity of the directional derivative
(more precisely, the covariant derivative).

On Riemannian manifolds, we have an inner product defined on the tangent space at each point
p, and they vary smoothly with respect to p. Using the metric, we have a rank (4, 0) Riemann
curvature tensor:

Definition 1.2. Let X, Y, Z,W ∈ TpM and R(X, Y )Z ∈ TpM be the (3, 1)-Riemann Curvature
tensor. Then

R(X, Y, Z,W ) = g(R(X, Y )Z,W ).

In coordinates we have R(∂i, ∂j, ∂k, ∂l) = Rijkl. Taking certain sums of the curvature tensor, we
define

Definition 1.3. For each 2-plane P ⊂ TpM , the sectional curvature K(P ) is defined by

K(P ) = R(X1, X2, X2, X1)

where {X1, X2} is an orthonormal basis for P .

Using the symmetries of the curvature tensor, the sectional curvature fully determines the
Riemann curvature tensor.

If M is a 2-dimensional Riemannian manifold, then the sectional curvature is equal to the Gauss
curvature.

We can also take the trace of the curvature tensor.

Definition 1.4. The Ricci curvature tensor is the “trace of the Riemann tensor” or more precisely
for X, Y, Z ∈ TpM ,

Ric(Y, Z) := Tr(X 7→ R(X, Y )Z).

If {ei}ni=1 is an orthonormal basis of TpM , then

Ric(Y, Z) :=
n∑
i=1

R(ei, Y, Z, ei).

It is this Ricci curvature which we will focus on for the remainder of this article.

.
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2. Eigenvalues of the Laplacian

In this section, we introduce a differential operator of fundamental importance in geometric
analysis, the Laplace-Beltrami operator, or the Laplacian, and its corresponding eigenvalue prob-
lem.

Let (Mn, g) be an n-dimensional Riemannian manifold, possibly with boundary. The Laplacian
∆ is a differential operator defined on twice-differentiable functions on M given by the divergence
of the gradient of a function u, i.e.,

∆u := div(∇u).

Equivalently, the Laplacian is given as the trace of the Hessian of u. The Laplacian arises in the
study of differential equations describing many different physical phenomena and its importance
in the field of mathematics and physics cannot be understated.

The behavior of the Laplacian is highly dependent on the underlying geometry and can be seen
in a quantitative sense by the Bochner formula. For u ∈ C3(M), we have

1

2
∆(|∇u|2) = |Hessu|2 + 〈∇u,∇(∆u)〉+ Ric(∇u,∇u).

Now we consider the L2-space of square integrable real-valued smooth functions C∞(M). The
smoothness assumption is stronger than what is needed however we will assume it for convenience.
We can equip the space with the L2-inner product

〈u, v〉L2 :=

ˆ
M

uvdV.

By applying the divergence theorem, we see that the Laplacian is a self-adjoint operator on the
L2-space. If the underlying space M is compact, then by the spectral theory of compact self-
adjoint operators, the spectrum of ∆ consists of eigenvalues (starting possibly at either λ0 or λ1
to be elaborated later)

0 = λ0 < λ1 ≤ λ2 ≤ · · ·λk →∞
of finite multiplicity. As a PDE, we write ∆u = −λu, with u ∈ H, some Hilbert space of functions.
In this article, we will focus on the case that M is a closed (compact and no boundary) manifold.
In this case, the smallest eigenvalue is 0 since u ≡ c 6= 0, c is some constant, will serve as a
solution to the eigenvalue problem. For the first non-trivial eigenvalue, we have the following
extremal characterization.

λ1 = inf

{´
M
|∇u|2dV´
M
u2dV

∣∣∣∣ ˆ udV = 0, u 6≡ 0

}
.

From this extremal characterization, we have the Poincaré inequality: For u ∈ C1(M) such that´
M
udV = 0, we have

λ1

ˆ
M

u2dV ≤
ˆ
M

|∇u|2dV.

Knowing the value of λ1 will give us the optimal Poincaré constant however the eigenvalues are
computable only in special cases often involving some symmetry. A non-zero lower bound will
suffice to obtain the inequality and is what we will focus on here.

There are two classical results for a lower bound of the first nontrivial eigenvalue.

Theorem 2.1 (Lichnerowicz [4]). Let (M, g) be a complete n-dimensional Riemannian manifold
with Ric ≥ (n− 1)K > 0. Then

λ1 ≥ nK.

.
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4 SHOO SETO

Remark 2.1. Obata [5] establishes that equality holds if and only if M is isometric to a round
n-sphere of radius 1√

K
is equal to nK

When K = 0, the Lichnerowicz estimate does not give us new information. In such a case, we
have the following estimate of Zhong-Yang.

Theorem 2.2 (Zhong-Yang [7]). Let (M, g) be a closed Riemannian manifold with Ric ≥ 0. Then

λ1 ≥
π2

D2
,

where D = diam(M).

Remark 2.2. Hang and Wang [2] established that equality holds if and only if M is isometric to
S1 with radius D

π
.

The two classical estimates mentioned above has been unified as a comparison result between
the first nonzero eigenvalue on M and the first nonzero eigenvalue of an ODE.

Theorem 2.3 (Kröger [3], Bakry-Qian [1]). Let (M, g) be a compact n-dimensional Riemannian
manifold (possibly with a smooth convex boundary) with diameter D and Ric ≥ (n − 1)K for
K ∈ R. We assume Neumann boundary conditions if ∂M 6= ∅. Then

λ1 ≥ λ̄1(n,K,D)

where λ̄1(n,K,D) is the first nonzero Neumann eigenvalue of the one-dimensional eigenvalue
problem

ϕ′′ − (n− 1)TKϕ
′ = −λ̄ϕ

on the interval [−D/2, D/2]. Here the function TK , K ∈ R is defined to be

TK(x) :=


√
K tan(

√
Kx), K > 0

0 K = 0

−
√
−K tanh(

√
−Kx) K < 0.

The above is indeed a uniformization of Lichnerowicz and Zhong-Yang estimates since when
K = 0, the explicit solution is given by ϕ(x) = cos( π

D
x). When K > 0, we can consider the model

when D = π√
K

so that the eigenfunction is given by ϕ(x) = sin(
√
Kx) which has the eigenvalue

λ̄ = nK.

3. Integral Ricci Curvature

We now generalize the pointwise lower bound to an integral condition. Let ρ(x) be the smallest
eigenvalue for the Ricci tensor and let ρK := max{−ρ(x) + (n− 1)K, 0}. Define the quantity

k̄(p,K) :=

( 
M

ρpKdV

) 1
p

which measures the amount of Ricci curvature lying below (n− 1)K in an Lp average sense. Note
that k̄(p,K) = 0 iff Ric ≥ (n− 1)K.

Several results under the pointwise Ricci lower bound have been generalized to the integral Ricci
curvature condition case. In particular, we have a generalization of the Zhong-Yang estimate:

.
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Theorem 3.1 (Ramos Olivé-Seto-Wei-Zhang [6]). Let (Mn, g) be a closed Riemannian manifold
with diameter ≤ D and λ1 be the first nonzero eigenvalue. For any α ∈ (0, 1), p > n

2
, n ≥ 2, there

exist sε(n, p, α,D) > 0 such that if k̄(p, 0) ≤ ε, then

λ1 ≥ α
π2

D2
.

With a more delicate analysis, we can generalize the Kröger estimate for the integral Ricci
curvature case.
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perhaps infamously) attempted to prove the Four Color Theorem using what are now

called “Kempe chains.” Given a partially colored plane graph G and two colors A,B, we

can define an AB Kempe chain as a maximal set of connected regions of G containing

only colors A and B. A color exchange on an AB Kempe chain is the result of permuting

the colors A and B on the Kempe chain. Kempe believed that a simple sequence of color

exchanges on these connected components would always be able to produce a four coloring

of a plane graph from a partial coloring of all regions excepting one region having at most 5

neighbors (see [6, 10]). This approach was ultimately disproven by Heawood in [4]. While

there are computer-assisted proofs of the Four Color Theorem, notably those in [1] and

later in [9], these are “machine-checkable proofs” and have not been checked by human

readers.

While Kempe’s own attempt was flawed, the idea of Kempe color exchanges on Kempe

chains is much easier to grasp than the computational approaches in [1] and [9], and it

has proven very effective in practice. It has been demonstrated in [3, 5, 8] that randomly

applying color exchanges to Kempe chains has a very high success rate in being able to

color a plane graph in relatively few exchanges (see Section 6 for a more precise description

of how these exchanges are used). The question, however, is still open if this method

will ever get “stuck,” or if using sequences of Kempe chain exchanges will always resolve

any issues in coloring. Notably, proof of such a fact would be a proof of the Four Color

Theorem, so we anticipate such a proof to be quite challenging.

Instead of applying random color exchanges, we can explore systematic applications of

specific color exchanges. This was studied by Alfred Errera in 1921 [2], and more recently

by Weiguo Xie in [11, 12, 13]. In both cases the authors consider coloring the regions of

cubic maps, where a cubic map is a 2-connected 3-regular plane graph. It is known that

showing that the regions of all cubic maps can be properly four-colored is equivalent to

proving the Four Color Theorem.

In [2], Errera produced a map with a rather unusual property: given a partial coloring of

the map so that all but one region (in this case, all but the exterior region) are colored, and

given a particular method of routinely applying Kempe color exchanges, the graph returns

to its original coloring after 20 such exchanges. Therefore, this coloring fails to reach a state

2
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where the exterior region can be colored using this method. As Errera was hoping to prove

the Four Color Theorem using this technique, the existence of this counterexample was

troublesome. Errera’s map is shown in Figure 1, as presented in [7]. For future reference,

we will denote this partial coloring of the Errera map c0.

Figure 1: A coloring of the Errera map, providing a counterexample to Errera’s original
coloring method. In the first graph the uncolored region is the exterior region, while in the
second the uncolored region is an interior region. There is no significant difference between
these two representations; we will follow [7] and use the first.

In this paper, we will thoroughly examine Errera’s counterexample, determine how to

resolve the partial coloring into a proper four-coloring of the entire map, and see how this

method can be expanded to a larger class of graphs.

2 Definitions

In 1935, Errera’s work was expanded by Irving Kittell, who defined eight different ways

to perform Kempe color exchanges on the regions of a map (see [7]). The “random color

exchanges” mentioned previously are typically applications of Kittell’s operations. Of those

operations, several will be of interest to us. We will assume in the following definitions that

the exterior region is the uncolored region, that the exterior region has five neighboring

regions, and that these neighboring regions contain all four colors. (Later, we will modify

3
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these assumptions to account for graphs with more than one uncolored region, but they

are sufficient for the time being.) This means that one color is used twice amongst the

neighboring regions. For brevity, we will call the colored regions adjacent to the uncolored

region boundary regions. The following notation and definitions are taken from [7], with

some rephrasing and adaptation. We will refer to the coloring in Figure 1 for examples.

� The boundary region situated between two boundary regions of the same color is

called the vertex. In Figure 1, this is the boundary region labeled R.

� A Kempe chain containing both the vertex and and the boundary region positioned

two spaces clockwise from the vertex is called the left-hand circuit. We may also refer

to this circuit by its colors; in Figure 1, we would call the left-hand circuit the RG

circuit. If such a Kempe chain does not exist, we will refer to the Kempe chain using

these colors and starting at the vertex as a broken left-hand circuit.

� Similarly, a Kempe chain containing both the vertex and the boundary region posi-

tioned two spaces counterclockwise from the vertex is called the right-hand circuit. In

Figure 1, we would call this the RY circuit. We analogously define broken right-hand

circuit.

� A Kempe chain beginning at the boundary region clockwise to the vertex and whose

other color is that of the region two spaces counterclockwise of the vertex (in Figure

1, B and Y ) is called the left-hand chain.

� A Kempe chain beginning at the boundary region counterclockwise to the vertex and

whose other color is that of the region two spaces clockwise of the vertex (in Figure

1, B and G) is called the right-hand chain.

� The Kempe chain containing the two boundary regions not adjacent to the vertex is

called the end tangent chain. In this case, this would be a GY Kempe chain.

Using these definitions, we will state some of Kittell’s operations.

� α : Exchanging colors on the left-hand chain

4
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� β : Exchanging colors on the right-hand chain

� γ : Exchanging colors on the left-hand circuit (or the broken left-hand circuit)

� δ : Exchanging colors on the right-hand circuit (or the broken right-hand circuit)

� ϵ : Exchanging colors on the end tangent chain

Given a partial coloring c from a subset of the regions of a graph to the colors {R,B, Y,G}
and some operation σ, we will refer to σ(c) as the resulting coloring after applying σ to c.

In addition, given two operations σ1, σ2, we will refer to σ2σ1 as the result of applying first

σ1, then σ2.

In Kittell’s work, it was assumed that every coloring was at impasse prior to using these

operations, an assumption we will not necessarily make. Traditionally, impasse means that

the left-hand circuit and right-hand circuit “cross.” However, since the manner of crossing

is somewhat specific, we will instead define impasse to mean that c, α(c), and β(c) each

have both a left-hand and right-hand circuit. This is slightly stronger than the traditional

understanding of impasse, but it will simplify our work. Indeed, if a coloring does not have

a left-hand or right-hand circuit, then the operations γ and δ respectively result in only 3

colors amongs the boundary regions, allowing us to color the exterior with the remaining

color. For practical reasons, it will be assumed that α is only applied to colorings having

a left-hand circuit, and similarly β is only applied to colorings having a right-hand circuit.

This ensures by planarity that the left-hand chain (and right-hand chain respectivley) only

contains one boundary region.

Given these definitions and notation, let us state Errera’s results from [2] more formally.

Proposition 2.1. Let c0 be the partial coloring of the Errera map in Figure 1. Then

αn(c0) is at impasse for all n ∈ N, and α20(c0) = c0.

It is also readily observed that if c is at impasse, then αβ(c) = βα(c) = c. This was

noted in [7].

5
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3 Impasse Colorings of Errera Map

We will begin by showing that only four colorings of the Errera map are impasse colorings

(up to rotation and permutation of colors).

In Figure 2, we have numbered the interior regions of the Errera map. We have also

assigned colors to the five regions adjacent to the exterior uncolored region. This can be

done without loss of generality, as we can freely rotate the Errera map and permute colors

until they are in the configuration shown in Figure 2. It bears mentioning that each of our

four colorings of the interior region represents the 4! · 5 = 120 different colorings that can

be obtained by permutation and rotation.

We begin with two cases: The regions 1 and 2 are colored Y and G respectively, or the

regions 1 and 2 are colored G and Y respectively.

Figure 2: Blank numbered copy of the Errera map and our two primary cases.

We begin with a general observation that will assist in narrowing down possible impasse

colorings.

Observation 3.1. Neither region 6 nor region 10 can be colored R.

Proof. In an impasse coloring, there must be a RY circuit. This means that region 9 or

region 11 must be colored R. Since region 10 is adjacent to both region 9 and region 11, it

6
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may not be colored R. A similar argument except with the RG circuit shows that region

6 cannot be colored R.

We now proceed to our cases.

3.1 Case 1

In this case, regions 1 and 2 are colored Y and G respectively. We now consider the location

of the next R region in the RY circuit. Before we do, let us observe a fact that applies to

all colorings in Case 1.

Observation 3.2. In Case 1, neither region 4 nor region 8 can be colored R.

Proof. If region 4 were colored R, then all four colors would be adjacent to region 5, and

thus region 5 could not be colored. This also applies to region 8.

Therefore, we see that the next region in the RY circuit must be either region 5 or

region 3. These will be Cases 1.1 and 1.2, as shown in Figure 3

Figure 3: Colorings for Cases 1.1, 1.2.1, and 1.2.2.

In Figure 3, the remainder of the graph for Case 1.1 is colored as well. Starting with

just regions 1, 2, and 5 colored, we see that the only region adjacent to 5 that is not adjacent

7
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to another Y region is 6. Due to the R in region 5 and Observation 3.1, the next R region

must be region 7. The only region adjacent to 7 that is not also adjacent to a Y is 8, which

must be the next region in the RY circuit. Similarly, the only region adjacent to 8 that is

not adjacent to a R is region 9. This completes the RY circuit, and regions 1, 2, 5, 6, 7, 8,

and 9 have been colored. Region 3 is now adjacent to three different colors and must

therefore be colored the fourth color, B. The same applies to region 11, and then also to

regions 4 and 10 which must be colored G. Thus, this starting coloring of regions 1, 2, and

5 determines the remainder of the coloring.

In Case 1.2, there are once again two different places where the next region of the RY

circuit may be located: region 7 or region 8. These are divided into Cases 1.2.1 and 1.2.2.

One can quickly deduce by Observations 3.1 and 3.2 that Case 1.2.1 cannot lead to an

impasse coloring of the Errera map. Therefore, we turn our attention to Case 1.2.2. Note

that region 9 has been colored R, due to the R in region 3 and Observation 3.1. This

completes the RY circuit. Now we turn our attention to the RG circuit. The next G

region in the RG circuit may be placed in either region 4 or 7, giving cases 1.2.2.1 and

1.2.2.2 depicted in Figure 4.

Figure 4: Colorings for Cases 1.2.2.1 and 1.2.2.2

Once again, an entire coloring for Case 1.2.2.1 has been provided. Given colorings of

regions 1, 2, 3, 4, 8, and 9, we see that region 5 is adjacent to three different colors (and in

8
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fact, has been in all of Case 1) and must be colored R. Region 7 is also adjacent to three

colors, and therefore must be colored B. Now region 6 is adjacent to three colors and must

be colored Y , then similarly region 11 must be colored B, and region 10 must be colored

G. Thus, the remainder of the coloring is determined.

In Case 1.2.2.2, we deduce as in Case 1.2.1 by Observations 3.1 and 3.2 that we cannot

have an impasse coloring of the Errera map. Thus, we have completed our examination of

Case 1, resulting in only two potential impasse colorings of the Errera map.

3.2 Case 2

In this case, regions 1 and 2 are colored G and Y respectively. Again, we try to complete

the RY circuit. First, we make an observation slightly different than those preceding.

Observation 3.3. In Case 2, neither region 5 nor region 9 can be colored R.

Proof. Let c be an impasse coloring in Case 2. Note that since c is in impasse, there

is an RY circuit, and therefore there is no Kempe chain from the B boundary region

counterclockwise to the vertex to the G boundary region. If region 5 was colored G in

a coloring c, then the left-hand chain (a BY chain) would consist of only the boundary

region clockwise to the vertex. Therefore, α(c) would have the G boundary region as its

vertex, and there would still be an RY -chain stretching from the R boundary region to

the Y boundary region clockwise to the vertex. Therefore, α(c) could not have a left-hand

circuit (which in this case is a BG circuit), which contradicts that c is at impasse. The

case for region 9 is similar.

With this result in hand, we attempt to continue the RY circuit. Considering Obser-

vation 3.3, the next R region can either be in region 3 or 8. These are Cases 2.1 and 2.2

in Figure 5, with Case 2.1 divided into two smaller cases.

Neither Case 2.1.1 not Case 2.1.2 can lead to an impasse coloring of the Errera map.

In Case 2.1.1, the R in region 3 and Observations 3.1 and 3.3 eliminate all options for the

next R region in the RY circuit. Similarly, in Case 2.1.2 the R in region 3 and Observation

3.1 eliminate all options for the next R region. Therefore, we turn our attention to Case

9
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Figure 5: Colorings for Cases 2.1 and 2.2

2.2. Once again, some additional regions have been colored. Given colorings of regions

1, 2, and 8, we see that regions 3 and 9 are adjacent to three colors and must be colored B

and G respectively. We also note that the next R in the RG circuit cannot be in region 5

by Observation 3.3, and thus must be in region 4. Now region 5 is also adjacent to three

colors and must be colored Y .

The next Y region of the RY circuit can then be in either region 7 or 10. These will be

Cases 2.2.1 and 2.2.2 in Figure 6. In each case, a complete coloring of the interior regions

of the Errera map is determined.

In Case 2.2.1, we start with a coloring of regions 1, 2, 3, 4, 5, 7, 8, and 9. Then region

10 is now adjacent to three colors and must be colored B. This then causes regions 6

and 11 each to be adjacent to three colors, and therefore they must be colored G and R

respectively. Therefore a coloring has been determined. In Case 2.2.2, we again start with

a coloring of regions 1, 2, 3, 4, 5, 7, 8, and 9. This time, region 6 is adjacent to three colors

and must be colored B. This then causes regions 10 and 11 to be adjacent to three colors,

and therefore they must be colored Y and R respectively.

Thus we have completed our analysis of cases. The only cases which potentially provide

impasse colorings of the Errera map are Cases 1.1, 1.2.2.1, 2.2.1, and 2.2.2. Note that the

coloring in Case 1.2.2.1 is the same as that in Figure 1. We present again the remaining

10
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Figure 6: Colorings for Cases 2.2.1 and 2.2.2

three colorings in Figure 7.

Figure 7: Three potential impasse colorings of the Errera map

4 Verifying Cyclicity

Thus far, we have narrowed our search to four colorings of the interior regions of the Errera

map which may have impasse colorings. We have neither shown that these are impasse

colorings, let alone colorings having the same cyclic pattern as the coloring c0 in Figure 1.
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However, we are aided by the following observation:

Observation 4.1. Let c be a coloring of the interior regions of the Errera map such that

αn is at impasse for all n, and α20(c) = c. Then this is also true for all colorings αk(c),

for any k.

If we can show that each of the colorings in Figure 7 is αk(c0) for some k, perhaps

under some rotation and permutation of colors, then this will show that the coloring is at

impasse and has the same cyclic pattern as the original Errera map.

First, we apply α to the coloring c0 in Figure 1 and permute the colors by (GRY B).

This is shown in Figure 8. We note that this is a rotation of the coloring in Case 2.2.2.

Therefore, the coloring in Case 2.2.2 is equivalent to α(c0).

Figure 8: Original coloring under α, then under permutation of colors. Results in a rotation
of Case 2.2.2.

We will now applying α2 and α3 to c0, permuting colors appropriately. These results

are given in Figure 9, with the colorings being rotations of Cases 1.1 and 2.2.1 respectively.

We have now described all impasse colorings of the Errera map, which happen to also

be colorings leading to a cyclic pattern. This has of course assumed that the uncolored

region is one of the pentagonal regions adjacent to no hexagons. Some pentagonal regions

of the Errera map are adjacent to hexagons, although these will not be studied here.

12
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Figure 9: Original coloring under α2 and α3, then under permutation of colors. Results in
rotations of Case 1.1 and Case 2.2.1 respectively.

We can neatly summarize our findings in the theorems below. For the sake of brevity

here and later, we will say that R is a central pentagon of the Errera map if it is a pentagonal

region whose neighbors are also pentagonal regions. We will assume in the following that

the Errera map is drawn so that the exterior region is a central pentagon.

Theorem 4.2. Let G be the Errera map drawn so that the exterior region is a central

pentagon, let c be a proper coloring of the interior regions of G, and let c0 be the coloring

in Figure 1. Then the following are equivalent:

1. c is an impasse coloring.

2. c is equivalent to c0, α(c0), α
2(c0), or α3(c0), possibly under some rotation and/or

permuation of colors.

3. αn(c) is at impasse for all n, with α20(c) = c.

Corollary 4.3. Let G be the Errera map drawn so that the exterior region is a central

pentagon. There are exactly 480 proper colorings of the interior regions of G that are at

impasse, counting rotations and permutations as separate colorings.

We end this section by presenting in Figure 10 all four impasse colorings of the Errera

map (up to rotation and permutation of colors). Note that the interior central pentagon

13
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of each is colored differently, which makes it easier to distinguish which coloring is present

in a given instance.

Figure 10: All four impasse colorings of the Errera map.

5 Resolving Impasses

Now that we have succinctly described all possible impasse colorings of the interior regions

of the Errera map, we can briefly discuss how to resolve impasses in all such cases.

The following observation is made by Kittell in [7].
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Observation 5.1. Let c0 be the coloring of the Errera map in Figure 1. Then ϵ(c0) is not

at impasse.

Figure 11 demonstrates this to be true. While there are certainly some paths that

appear to cross, the existence of at least one RY circuit and one RG circuit that do

not cross is enough to demonstrate that the coloring is not at impasse by the traditional

definition. By our revised definition, we note that αϵ(c0) does not have a left-hand circuit,

and therefore γαϵ(c0) has only three colors in boundary regions.

Figure 11: Resolution of impasse in c0 by ϵ.

One may notice that c0 and α2(c0) are very similar. In fact, we can observe the following

(leaving verification to the reader).

Observation 5.2. Let c0 be the coloring of the Errera map in Figure 1. Then ϵ(α2(c0))

is not at impasse.

One more observation of Kittell’s will be useful.

Observation 5.3. Let c0 be the coloring of the Errera map in Figure 1. Then α4(c0) is a

rotation of c0.

This should not be surprising, as c0, α(c0), α
2(c0), and α3(c0) make up all the distinct

impasse colorings of the Errera map. Given our characterization of the impasse colorings

15

.



.

28

of the Errera map and these observations, we can now characterize resolutions of impasse

in the Errera map.

Theorem 5.4. Let G be the Errera map drawn so that the exterior region is a central

pentagon, and let c be a proper coloring of the interior regions of G which is at impasse.

Then the impasse can be resolved by either ϵ or ϵα.

Proof. By Theorem 4.2 we may assume that c is αn(c0) for 0 ≤ n ≤ 3. By Observations

5.1 and 5.2 we have handled the cases n = 0, 2. For n = 1, 3, note that applying ϵα to

α(c0) and α3(c0) results in ϵαα(c0) = ϵα2(c0) and ϵαα3(c0) ≃ ϵ(c0), neither of which is at

impasse. Thus we have handled all cases.

6 Coloring a Graph Containing the Errera Map

Suppose we are four-coloring the regions of a cubic map one-by-one, and upon attempting

to assign a color to a region we find it has five colored neighbors using all four colors. It

is possible that this graph contains a cycle C such that the map induced by all regions

interior to the cycle is the Errera map (in a way which will be more precisely defined later),

with the region currently trying to be colored corresponding to a central pentagon. In such

a case, can the findings above translate to a method to assign a color to this region?

First, let us rephrase this condition in a few ways. First, we may as well exchange

“inside” with “outside,” so that all of the regions not belonging to the Errera map are

interior to the cycle C. Next, we will say a cubic map is the Errera map with a hole

if there is a cycle C containing any number of regions such that the graph formed by

contracting the cycle and all regions interior of the cycle to a vertex is isomorphic to either

the Errera map or a subdivision of the Errera map. We may also allow the Errera map

to have more than one hole. Examples of Errera maps with holes, as well as cycles which

would not count as holes in this sense, are depicted in Figure 12. Note that the dual of

an Errera map with holes either contains the Errera map dual as an induced subgraph, or

otherwise is a multigraph containing the dual of the Errera map with added parallel edges

as an induced subgraph.
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.



.

29

Figure 12: The first two graphs are the Errera map with “holes” as described above. The
bolded circles may contain any number of regions. Contracting the cycles in the third
graph results in vertices of degree 4 or more, and thus the result is not the Errera map or
a subdivision of the Errera map.

So how many of the results of the previous section translate to the Errera map with

holes? The answer is nearly all of them.

Consider a partial coloring of an Errera map with holes. Suppose we would like to assign

a color to an uncolored region with at most five colored regions which, after contraction of

all holes and vertices of degree 2, is a central pentagon of the Errera map. For brevity, we

will refer to such a region simply as a central pentagon, even though it or its neighbors may

not be pentagons prior to contraction. Further assume that this central pentagon is drawn

as the exterior region. Assume also that the only colored neighbors of the exterior region

are those on the Errera map proper (that is, no colored region of a hole touches the exterior

region). We will make the following observations, with justification where necessary.

Observation 6.1. Adding holes preserves adjacency relations of the Errera map.

Observation 6.2. A proper partial coloring of the Errera map with holes induces a proper

partial coloring of the Errera map.

The following fact takes some justification.

17

.



.

30

Proposition 6.3. The AB Kempe chains of a partially colored Errera map with holes

containing at least one region of the Errera map induce AB Kempe chains on the induced

partial coloring of the Errera map, and vice versa.

Proof. Let K be the collection of Kempe chains of the Errera map with holes containing

at least one region of the Errera map, and let K′ be the collection of Kempe chains of the

Errera map. First, note that the partial coloring of the Errera map with holes induces

a proper partial coloring on the Errera map. Therefore, a Kempe chain K ∈ K contains

one or more Kempe chains K ′
1,K

′
2, ...K

′
t ∈ K′. We will show K contains only a single such

Kempe chain.

Suppose to the contrary that there are t ≥ 2 Kempe chains of the Errera map contained

in K as described above. Then the regions connecting these Kempe chains must belong to

holes. Let H be a hole connecting at least two distinct Kempe chains K ′
i and K ′

j . Then

there are regions R′
i and R′

j of K ′
i and K ′

j respectively that are both adjacent to regions

inside H. Note that all regions bordering H are mutually adjacent in the Errera map.

Therefore, since R′
i, R

′
j are both bordering H, they must also be adjacent in the Errera

map. Thus the Kempe chains K ′
i and K ′

j are connected. This is a contradiction, and the

Kempe chain K ∈ K induces exaclty one Kempe chain K ′ ∈ K′.

Thus we have defined a map f : K → K′ from a Kempe chain in the Errera map with

holes to its induced Kempe chain in the Errera map. Since every Kempe chain K ′ ∈ K′ is a

subgraph of exactly one Kempe chain K ∈ K (certainly not multiple disconnected Kempe

chains, as they must share all regions of K ′ in common, contradicting disconnectivity), we

also have an inverse f−1 : K′ → K. Thus, we have shown a bijection between the K and

K′.

Next we would like to make an observation about performing Kittell’s color exchange

operations on a partially colored Errera map with holes. However, we will now need to

modify our definitions slightly to accomodate additional uncolored regions. First, we will

always be interested in attempting to assign a color to a specific uncolored region R, which

has at most 5 colored neighbors, all belonging to the Errera map. We will assume that

R is the exterior region, and R will take the place of the single uncolored region in our
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previous definitions. Also, when counting regions clockwise and counterclockwise from a

given colored boundary region, we ignore any uncolored regions. If the boundary of a

region is interrupted by a hole, as in the second graph in Figure 12, then we ignore the

(by necessity uncolored) boundary regions in the hole and count the interrupted region as

a single region. Lastly, it might be in the general case that the boundary regions having

the same color are consecutive but separated by uncolored regions. Since adjacency is

preserved by adding holes this will not be the case here; however, a resolution to such a

situation is provided in [3].

We next observe the following, with proof.

Observation 6.4. Let c be a partial coloring of an Errera map with holes, let c′ be the

induced coloring of the Errera map, and let σ be a color exchange operation. Then the

proper coloring σ(c) induces the proper coloring σ(c′) on the Errera map.

Proof. Let K be a Kempe chain in the Errera map with holes that begins at a colored

boundary region. Such a region necessarily belongs to the Errera map, and thus this

induces a Kempe chain K ′ on the Errera map beginning at that same region. Then, σ(c)

exchanges the colors on K. This induces a proper coloring of the Errera map without

holes, where the colors on K ′ have been exchanged. This is exactly σ(c′).

These observations culminate in the following theorem about impasse in the Errera

map with holes.

Theorem 6.5. A partial coloring of the Errera map with holes is at impasse if and only

if the induced coloring of the Errera map is also at impasse.

Proof. Let c be a partial coloring of the Errera map with holes, and c′ be the induced

partial coloring of the Errera map. First, suppose c is at impasse. Then c has a left-hand

circuit and right-hand circuit. Since these are Kempe chains starting at colored boundary

regions, and all colored boundary regions are also boundary regions of the Errera map,

this induces left-hand and right-hand circuits in c′. If c is at impasse, α(c) and β(c) each

have a left-hand circuit and a right-hand circuit. These induce colorings which also have
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left-hand and right-hand circuits; by Observation 6.4, these colorings are exactly α(c′) and

β(c′). Therefore c′ is at impasse.

For the reverse direction, suppose that c′ is at impasse. Then α(c) and β(c) induce

colorings α(c′) and β(c′). Since c′ is at impasse, c′, α(c′), and β(c′) each have left-hand and

right-hand circuits. These circuits are each subgraphs of left-hand and right-hand circuits

in c, α(c), and β(c) respectively. Thus, c is also at impasse.

As a result of Theorem 6.5, most of our previous results follow. If the Errera map

with holes is at impasse, then the induced coloring of the Errera map is also at impasse.

Applying α any number of times will still result in an impasse coloring of the Errera map,

which translates to an impasse coloring of the Errera map with holes. However, while

applying α20 returns the coloring of the Errera map to its original impasse coloring, the

same is not necessarily true of regions inside holes. However, since the number of colorings

is finite and applying α repeatedly does not resolve the impasse, it follows that the sequence

of partial colorings generated by α will also be cyclic with some period p such that 20|p.

Of most interest is the fact that, since we can resolve all impasse colorings of the Errera

map, we can also resolve all impasse colorings of the Errera map with holes.

Theorem 6.6. Let G be an Errera map with holes, and let c be a partial coloring of G,

where all regions of the Errera map except for a central pentagon R have been assigned a

color. Suppose further that the only colored neighbors of R belong to the Errera map, and

when attempting to assign a color to R, the coloring c is at impasse. Then the impasse can

be resolved by either ϵ or ϵα.

7 An Example, a Motivation, and a New Example

We begin by exhibiting in Figure 13 an example of an Errera map with a hole. This

graph was generated randomly using the reduction algorithm described by Morgenstern

and Shapiro in [8]. Specifically, this was generated as a maximal planar graph, then

converted to a cubic map. The regions of the map have been carefully arranged to make

its structural properties apparent.
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Figure 13: An example of an impasse coloring of an Errera map with a hole.

We will note that it takes 60 applications of α to return this graph to its original coloring

(leaving verification to the reader). We can also observe by the fact that the interior central

pentagon is colored G that the induced coloring of the Errera map is a rotation of α(c0).

Therefore, we should be able to resolve the impasse by ϵα and furthermore obtain only three

colors on the boundary regions by next applying γα. In Figure 14 we show the coloring

obtained by applying γαϵα to the map in Figure 13. At this point, the exterior region can

be colored R, obtaining a coloring of all regions of the map.

One may wonder why Errera maps with holes are of particular interest. On one hand,

we have seen that certain partial colorings of Errera maps with holes are at impasse under

repeated application of α, showing that this entire class of graphs is rather troublesome. On

the other hand, we have now developed a method of resolving impasses in these troublesome

cases with only a handful of color exchanges.
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Figure 14: Coloring of Errera map with a hole after applying γαϵα.

Original experimental data suggested that the Errera maps with holes were the only

graphs for which α failed to resolve impasse. However, additional tests have revealed some

exceptions. One such graph G is shown in Figure 15; we will call the coloring c.

In this case, while we see that the Errera map makes an appearance, some adjacency

relations between regions are not maintained. This represents missing edges in the dual

graph. Like the example in Figure 13, we see that α60(c) = c. Interestingly, one can observe

that considering the regions that correlate to regions of the Errera map, the colorings αk(c)

restricting to the Errera map are each impasse colorings of the Errera map. Unlike the

case with the Errera map with holes where this can be proven to happen, this seems to be

purely a remarkable coincidence. It remains to be seen if there are certain properties of

the map G that lead to this occurrence.

We end by observing that, in many impasse colorings c of cubic maps G, αn resolves
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Figure 15: An example of an impasse coloring of a map that is not an Errera map with
holes as defined above, as not all adjacency relations are maintained.

impasse for some n. In the cases where c is an impasse coloring of the Errera map or an

Errera map with holes, then we have proven that ϵ or ϵα resolves impasse. It has also been

seen experimentally that in other cases where αn does not resolve impasse that ϵαn still

resolves impasse. This leads to a final question:

Question 7.1. Can it be shown that for any impasse coloring c of a cubic map G that

either αn or ϵαn resolves impasse for some n ∈ N?

Data Availability Statements The data that support the findings of this study are

available from the corresponding author upon reasonable request.
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A right Artinian simple ring is isomorphic to a matix ring Mn(D) for some

positive integer n and some division ring D. Hence, by Wedderburn’s little

thore we obtain

Theorem 2. A finite simple ring is isomorphic to a matix ring Mn(F ) for

some positive integer n and some finite field F .

Theorem 3. A finite ring R has a unique maximal nilpotent ideal J and R/J

is a finite direct sum of simple rings. We call J the Jacobson radical of R.

The book “Finite Rings With Identity” by Bernard R. McDonald [?] is a

good reference for finite rings.

Some results on the group of units of a finite

ring

The following are some examples of groups of units of finite rings.

Example 4. Consider the ring R = Z/8Z = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄}. Then

R× = {1̄, 3̄, 5̄, 7̄}. This is the Klein four-group, that is an abelian group

with four elements, in which each element is self-inverse.

Example 5. Consider the ring R = M2(Z/2Z). Then R× = GL2(Z/2Z)

=

{(
1̄ 0

0 1̄

)
,

(
1̄ 1̄

0 1̄

)
,

(
1̄ 0

1̄ 1̄

)
,

(
0 1̄

1̄ 0

)
,

(
1̄ 1̄

1̄ 0

)
,

(
0 1̄

1̄ 1̄

)}
∼= S3.

Example 6. Let G be any finite group and let F be any finite field. Consider

the group ring FG of G over F . Then G ⊂ (FG)×. Hence any finite group

is a subgroup of some group of units of a finte ring.

For a general ring R with identity, the Jacobson radical J = J(R) of a

ring R is the two-sided ideal of R defined by

J =the intersection of all maximal right ideals of the ring R

　=the intersection of all maximal left ideals of the ring R.

The Jacobson radical J of a ring R is characterized by the following:

J = { x | 1 + rx is a unit for all r ∈ R}.
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Proposition 7. 1+J is a normal subgroup of R× and R×/(1+J) ∼= (R/J)×.

Proof. From this fact, we see that 1 + J is a normal subgroup of R×.

Consider the canonical ring epimorphism f : R → R/J , that is, f(a) = a + J

for all a ∈ R. Suppose that a + J is a unit in R/J . Then there is an element

b ∈ R such that ab + J = ba + J = 1 + J . Then ab = 1 +x and ba = 1 + y for

some x, y ∈ J and hence ab(1 + x)−1 = (1 + y)−1ba = 1. Therefore a is a unit

of R. Hence f induces the group epimorphism R× → (R/J)×; a → a + J .

Since Ker(f) = 1 + J , we have R×/(1 + J) ∼= (R/J)×.

For the rest of this section, R denotes a finite ring with Jacobson radical

J .

Let G be a group. Recall that the commutator of x, y ∈ G is [x, y] =

xyx−1y−1. A group G is nilpotent if there is an integer m > 1 such that

[. . . [g1, g2], g3] . . . , gm] = 1 for all g1, g2, · · · , gm ∈ G.

Proposition 8. 1 + J is a nilpotent subgroup of R×.

Proof. Let n be the least positive integer such that Jn = 0. Then 1+J ⊃
1 + J2 ⊃ · · · ⊃ 1 + Jn−1 ⊃ 1 is a central series of 1 + J.

Theorem 9. (Eldridge [?]) Let R be a finite ring. Then R× is a nilpotent

group if and only if R/J is a direct sum of fields.

Proof. There is a exact sequence of groups:

1 → 1 + J → R× → (R/J)× → 1.

Since 1 + J is nilpotent, R× is a nilpotent group if and only if (R/J)× is

nilpotent. For some positive integers nk and some finite fields Fk, we have

R/J =
⊕m

i=1 Mnk
(Fk) and so (R/J)× =

∏m
i=1 GLnk

(Fk). Hence, (R/J)×

is nilpotent if and only if R/J is a direct sum of fields.

Remark 10. For a right Artinian ring R, there is also a exact sequence of

groups:

1 → 1 + J → R× → (R/J)× → 1

In this case, R/J is a finite direct sum of matrix rings over some division

rings. Hence we have the following:
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Theorem 11. Let R be a right Artinian ring. Then R× is finite if and only

if R is a finite ring.

However this result is not true for a right Noetherian ring, as the following

example shows.

Example 12. Consider the polynomial ring R = GF (2)[X] over the Galois

field GF (2). We can see R× = GF (2) = {1}, but R is not a finite ring.

On finite rings whose groups of units are solv-

able

The group G′ = G(1) generated by the commutators [x, y] in G is called the

commutator or first derived subgroup of G. The second derived subgroup

of G is G(2) = (G′)′; the third is G(3) = (G(2))′ ; and so on. A group G is

solvable if and only if its kth derived subgroup G(k) = 1 for some k.

Theorem 13. (Eldridge [?]) Let R be a finite ring. Then R× is solvable if

and only if R/J is isomorphic to a finite direct sum of copies of the following

rings:

(i) GF (pn) where p is a prime and n is a positive integer,

(ii) M2(GF (2)),

(iii) M2(GF (3)).

Proof. (ii) GL2(GF (2)) ∼= S3.

(iii) GL2(GF (3)) ⊃ SL2(GF (3)) ⊃ Z are normal series, where Z is the

center of SL2(GF (3)), and

SL2(GF (3))/Z ∼= PSL2(GF (3)) ∼= A4. It is well-known that A4 has the

Klein four-group V as a normal subgroup and A4/V is a cyclic group of oder

3.

On finite rings whose groups of units are abelian

Lemma 14. Let J be a finite local ring, that is R/J is a finite field. If R×

is abelian, then R is a commutative ring.
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Proof. Let a and b are two nonzero elements of R. If a, b ∈ R×, then

ab = ba. If a ∈ R× and b 6∈ R×, then a, 1 + b ∈ R× and hence ab = ba. If

a, b 6∈ R×, then 1 + a, 1 + b ∈ R× and also ab = ba.

Proposition 15. R is a finite noncommutative indecomposable ring. If R×

is abelian, then R/J ∼= GF (2)(n) the direct of of n copies of GF (2) for some

n > 1.

Proof. We know that R/J =
⊕m

i=1 Mnk
(Fk) for some finite fields Fk.

Since R is not commutative and R× is abelian, we see that m = 2 and

n1 = · · · = nm = 1, that is R/J = F1 ⊕ · · · ⊕ Fm for some m = 2. Let

e and f be two orthogonal idempotents of R such that ē is the identity of

F1 and f̄ is theidentity of F2. Clearly (e + f)R(e + f) also has an abelian

multiplicative group of units. So we may assume that R/J = F1 ⊕ F2. Then

R = eRe ⊕ eRf ⊕ fRe ⊕ fRf and e + f = 1. Also, we may assume that

eRf 6= 0 because R is indecomposable.

For a, a′ ∈ eRf and b′ ∈ (fRf)×, we have (e + a + f)(e + a′ + b′) =

(e+a′+b′)(e+a+f), and hence, e+a′+ab′+b′ = e+a+a′+b′. Multiplying

the both sides by e from the left, we obtain e + a′ + ab′ = e + a + a′, and

hence a(b′ − f) = 0. If F2 = fRf/fJf has more than two elements, then

there is an element b′ in fRf such that b′−f ∈ (fRf)×. In this case, we have

a = 0. But this implies eRf = 0, a contradiction. Therefore we conclude

that F2
∼= GF (2). By similar way, we see that F1

∼= GF (2).

Example 16. Let n > 1 and let

R =



GF (2) GF (2) · · · · · · GF (2)

0 GF (2) GF (2) · · · GF (2)

· · · 0 GF (2) · · · GF (2)

· · · · · · · · · · · · · · ·
· · · · · · · · · GF (2) GF (2)

0 · · · · · · 0 GF (2)


,

the ring of n × n upper triangular matrices over GF (2). Then the Jacobson

radical of R is

5
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J =



0 GF (2) · · · · · · GF (2)

0 0 GF (2) · · · GF (2)

· · · 0 0 · · · GF (2)

· · · · · · · · · · · · · · ·
· · · · · · · · · 0 GF (2)

0 · · · · · · 0 0


.

It can be esily seen that T = R/J2 is a finite noncommutative indecomposable

ring, T× is abelian, and T/J(T ) ∼= GF (2)(n).

On finite rings whose groups of units are cyclic

A Gilmer ring is any finite ring whose multiplicative group of units is cyclic.

Theorem 17. (Ayoub [?], Gilmer [?], Eldridge and Fischer [?]), Raghavendran [?])

Each of the following rings is a Gilmer ring:

(a) GF (pn) where p is a prime and n is a positive integer,

(b) Z/(pn) where p is an odd prime and n = 2,

(c) GF (p)[X]/(X2) where p is a prime,

(d) Z/(4),

(e) GF (2)[X]/(X3),

(f) Z[X]/(4, 2X, X2 − 2),

(g)

(
GF (2) GF (2)

0 GF (2)

)
, the ring of upper triangular matrices over GF (2).

Conversely, every indecomposable Gilmer ring is isomorphic to one of the

rings described above.

Remark 18. (a) R = GF (pn) is a finite field and R× is a cyclic group of

order pn − 1. If p 6= 2, pn − 1 is even.

(b) Let R = Z/(pn) where p is an odd prime and n = 2. Then |R×| =

(p − 1)pm−1 and this number is even.

(c) Let R = GF (p)[X]/(X2) where p is a prime. Then |R×| = (p − 1)p and

this number is even.

(d) Let R = Z/(4). Then R× = {1̄, 3̄}.
(e) Let R = GF (2)[X]/(X3). Then |R| = 8 and R× = 1 + J =

{1, 1 + X̄, 1 + X̄2, 1 + X̄ + X̄2}.
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(f) Let R = Z[X]/(4, 2X, X2 − 2). Then |R| = 8 and R×

= {1̄, 3̄, 1̄ + X̄, 3̄ + X̄} =< 1̄ + X̄ >∼= GF (5)×.

(g) Let R =

(
GF (2) GF (2)

0 GF (2)

)
. Then R× = 1 + J =

{(
1 0

0 1

)
,

(
1 1

0 1

)}
.

By this remark, we have the following Table:

R R× |R| |R×|

(a) GF (pn) p GF (pn) − {0} pn pn − 1

p a prime, n > 0

(b) Z/(pn) { ī | 0 5 i 5 pn − 1, p - i} pn (p − 1)pn−1

p an odd prime, n = 2

(c) GF (p)[X]/(X2) {a + bX̄|0 6= a ∈ GF (p), b ∈ GF (p)} p2 (p − 1)p

= (GF (p) \ {0}) + GF (p)X̄

(d) Z/(4) {1̄, 3̄} 4 2

(e) GF (2)[x]/(X3) {1, 1 + X̄, 1 + X̄2, 1 + X̄ + X̄2} 8 4

=< 1 + X̄ >

(f) Z[X]/(4, 2X,X2 − 2) {1̄, 3̄, 1̄ + X̄, 3̄ + X̄} 8 4

=< 1̄ + X̄ >

(g)

(
GF (2) GF (2)

0 GF (2)

) {(
1 0

0 1

)
,

(
1 1

0 1

)}
8 2

Remark 19. Let Gi be a finite cyclic group of order ni (for i = 1, 2). Then

G1 × G2 is cyclic if and only if n1 and n2 are relatively prime.

Except GF (2n) where n is a positive integer, all the other groups of units

of rings in Theorem 14 have even orders. Hence, if a Gilmer ring is the direct

sum of k(= 2) indecomposable rings, then at least k − 1 of these component

rings are GF (2ni) and n1, n2, · · · , nk−1 are relatively prime. For example, if

2n1 − 1, 2n2 − 1, · · · , 2nk−1 − 1 are distinct Mersenne primes, then GF (5) ⊕
GF (2n1) ⊕ · · · ⊕ GF (2nk−1) is a Gilmer ring.

Now we can prove the following:
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Proposition 20. R is a finite noncommutative indecomposable Gilmer ring

if and only if (g)

(
GF (2) GF (2)

0 GF (2)

)
, the ring of upper triangular matrices

over GF (2).

Proof. Since R is a noncommutative indecomposable ring, 2mR = 0 for

some m > 0. Since R is a Gilmer ring, R/J is also a Gilmor ring. Therefore

R/J is a finite direct of fields. If R is a local ring, then R is commutative.

Since R is not commutative, there is a nonzero idempotent e ∈ R such that

e 6= 1 and at least one of eR(1 − e) and (1 − e)Re is nonzero. Since (eR(1 −
e))2 = 0 and ((1 − e)Re)2 = 0, we see that eR(1 − e), (1 − e)Re ⊂ J . Hence

eR(1 − e) = eJ(1 − e) and (1 − e)Re = (1 − e)Je.

Considering R/J instead of R, we may assume that J2 = 0. Since

J = eJe ⊕ eR(1 − e) ⊕ (1 − e)Re ⊕ (1 − e)R(1 − e), we see that 1 + J =

(1 + eRe)× (1 + eR(1− e))× (1 + (1− e)Re)× (1 + (1− e)R(1− e)). Orders

of 1 + eRe, 1 + eR(1 − e), 1 + (1 − e)Re, 1 + (1 − e)R(1 − e) are powers of

2 and one of 1 + eR(1 − e), 1 + (1 − e)Re is non-trivial. However 1 + J is

also cyclic, and hence only one of 1 + eR(1 − e), 1 + (1 − e)Re is nontrivial

and other factors of 1 + J is {1}. Hence eJe = 0, (1− e)R(1− e) = 0 and so

eRe ∼= GF (2) and (1 − e)R(1 − e) ∼= GF (2)k for some k > 0. Assume that

eR(1 − e) 6= 0. Then eR(1 − e) is a vctor space over GF (2). Since 1 + J is

cyclic, eR(1− e) is one dimensional over GF (2). Since R is indecomposmble,

(1 − e)R(1 − e) ∼= GF (2) and R ∼=

(
GF (2) GF (2)

0 GF (2)

)
.

If eR(1 − e) 6= 0, then R ∼=

(
GF (2) 0

GF (2) GF (2)

)
. However there is an isomor-

phism

(
GF (2) 0

GF (2) GF (2)

)
'−→

(
GF (2) GF (2)

0 GF (2)

)
by

(
a 0

b c

)
−→

(
c b

0 a

)
.

Some Characterizations of finite rings R by

ratio
|R|
|R×|

For a finite ring R, we define the number µ(R) by
|R|
|R×|

.

8
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Theorem 21. Let R be a finite ring with Jacobson radical J . Then the

following are equivalent:

(i) R× = 1 + J .

(ii) µ(R) ∈ Z.

(iii) µ(R) = 2m for some positive integer m.

(iv) R/J ∼= GF (2)(m) for some positive integer m.

A Boolean ring R is a ring for which x2 = x for all x ∈ R, that is, a ring

that consists only of idempotent elements.

Since 1 + J ⊂ R×, as a corollary of this theorem, we obtain Theorem 4.3

in [?].

Corollary 22. Let R be a finite ring. Then R× = 1 if and only if R is a

Boolean ring.

Let Z(2) denote the subring of Q consists of the form
a

2m
for some integer

a and some non-negative integer m.

Theorem 23. Let R be a finite ring. Then µ(R) =
|R|
|R×|

∈ Z(2) if and only

if R/J is isomorphic to a finite direct sum of copies of the following rings:

(i) GF (2),

(ii) GF (p) where p is a Fermat prime,

(iii) GF (32),

(iv) M2(GF (3)).

Here remenber that the Catalan’s conjecture has been proven in 2002

by Preda Mihăilescu Mihăilescu’s theorem in [?] is the following : The only

solution in the natural numbers of xa − yb = 1 for a, b > 1, x, y > 0 is

x = 3, a = 2, y = 2, b = 3. To prove the above theorem, I used Mihăilescu’s

theorem [?]. However, in our particular case, we expect there to be a more

direct proof.

On finite rings whose groups of units are simple

Finally, for a finite ring R, we consider when R× is a simple group. Although

conditions for R× to be a simple group was stated in Exercise 19.3 in [?],

what is stated is not accurate. So we state the following.

9
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Theorem 24. Let R be a finite ring. Then R× is a simple group if and only

if R is isomorphic to one of the following rings:

(i) GF (3) ⊕ GF (2)(k) for some non-negative integer k,

(ii) GF (2n)⊕GF (2)(k) for some non-negative integer k, where p = 2n − 1 is

a Fermat prime,

(iii) Mn(GF (2))⊕GF (2)(k) for some non-negative integer k and some n = 3,

(iv) Z/4Z ⊕ GF (2)(k) for some non-negative integer k,

(v) T ⊕ GF (2)(k) for some non-negative integer k, where

T =

{ (
0 0

0 0

) (
1 0

0 1

) (
0 1

0 0

) (
1 1

0 1

) }
⊂ M2(GF (2)),

(vi)

(
GF (2) GF (2)

0 GF (2)

)
⊕ GF (2)(k) for some non-negative integer k.
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The construction in [2] proceeds as follows. Cohn has shown that each element of
RΣ is an entry eiλ(C)−1etj, in a matrix of the form λ(C)−1, where C ∈ Σ, ei, ej are
unit row vectors, and etj denotes the transpose of ej. Addition of triples requires us to

model elements of the form λ(a)λ(C)−1λ(b)t, where a, b ∈ Rn, and C ∈ Σn. Since it is
just as easy to construct a module of quotients, we consider ordered triples (a, C, xt),
where a ∈ Rn, C ∈ Σn, and x ∈ Xn, where X is any unital left R-module. Following
Malcolmson’s development in [6], we first define an addition on ordered triples.

Definition 1. The sum of ordered triples (a, C, xt), (b,D, yt), with a ∈ Rn, C ∈ Σn,
x ∈ Xn and b ∈ Rm, D ∈ Σm, y ∈ Xm is defined by

(a, C, xt) + (b,D, yt) =

(
[a b],

[
C 0
0 D

]
,

[
xt

yt

])
.

The next step is to introduce the following equivalence relation (see Definition 2.1
of [2]) under which the equivalence classes of ordered triples form a commutative
semigroup.

Definition 2. Let a, b ∈ Rn, C1, C2 ∈ Σn, and x, y ∈ Xn. If there exist invertible
n × n matrices U1, U2 over R such that a = bU1, yt = U2x

t, and C2U1 = U2C1, then
we write

(a, C1, x
t) ≡ (b, C2, y

t) ,

and we say that (a, C1, x
t) and (b, C2, y

t) are congruent via U1, U2.

Lemma 3 ([2]). Under the congruence relation ≡, addition of triples is commutative.

Proof. If C ∈ Σn and D ∈ Σm, then

(a, C, xt) + (b,D, yt) ≡ (b,D, yt) + (a, C, xt)

since

[a b] =
[b a]

[
0 Im
In 0

]
,[

D 0
0 C

] [
0 Im
In 0

]
=

[
0 Im
In 0

] [
C 0
0 D

]
,

and [
yt

xt

]
=

[
0 Im
In 0

] [
xt

yt

]
,

where In and Im are identity matrices of the appropriate sizes.
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We denote by Σ−1X0 the subsemigroup generated by all triples of the form
(0, C, xt) or (b,D, 0t), for a ∈ Rn, C ∈ Σn, x ∈ Xn and all n > 0. Since addition is
commutative, the elements of Σ−1X0 can be put in the form (0, C, xt) + (b,D, 0t).

Definition 4. Let a ∈ Rn, C ∈ Σn, x ∈ Xn and b ∈ Rm, D ∈ Σm, x ∈ Xm. If there
exist z1, z2 ∈ Σ−1X0 such that (a, C, xt) + z1 ≡ (b,D, yt) + z2, then we write

(a, C, xt) ∼ (b,D, yt) .

The equivalence classes of ordered triples under the equivalence relation ∼ will be
denoted by [a : C : xt], and Σ−1X will denote the set of all such equivalence classes.

Proposition 2.3 of [2] shows that ∼ defines a congruence on the semigroup of or-
dered triples, and that Σ−1X is an abelian group. With an appropriate multiplication,
it is then shown in [2] that Σ−1R is a ring isomorphic to the universal localization RΣ,
and that Σ−1X is a left module over RΣ that is naturally isomorphic to RΣ ⊗R X.

To construct a ring of left fractions using a multiplicative set S ⊂ R, we need
to be able to replace any product a1c

−1
1 with a product c−1

2 a2, where a1, a2 ∈ R and
c1, c2 ∈ S (see [5]). This leads to the left Ore condition: given a1 ∈ R and c1 ∈ S,
there exist a2 ∈ R and c2 ∈ S such that c2a1 = a2c1.

Addition in RΣ does not require the left Ore condition. However, by a fundamental
result (see Lemma 2.4 of [2]), if a ∈ Rm, C1 ∈ Σn, C2 ∈ Σm, x ∈ Xn, then

(aA1, C1, x
t) ∼ (a, C2, A2x

t)

for any m × n matrices A1, A2 over R such that C2A1 = A2C1. This looks like the
left Ore condition, since in RΣ we are replacing λ(A1)λ(C1)−1 by λ(C2)−1λ(A2). We
will use this condition to define a new relation. Note the important point that the
matrices C1, C2 may have different sizes.

Definition 5. Let a ∈ Rn, C1 ∈ Σn, x ∈ Xn and b ∈ Rm, C2 ∈ Σm, y ∈ Xm.
Suppose that there exist m × n matrices A1, A2 over R and factorizations a = bA1,
yt = A2x

t. If C2A1 = A2C1, then we write (a, C1, x
t) ≥ (b, C2, y

t).
In this case, we say that (a, C1, x

t) ≥ (b, C2, y
t) via A1, A2.

Lemma 6. The relation ≥ is reflexive, transitive, and respects addition.

Proof. Using the identity matrix, it follows immediately that ≥ is reflexive.
To show that the transitive law holds, let (a1, C1, x

t
1) ≥ (a2, C2, x

t
2) via A1, A2

and let (a2, C2, x
t
2) ≥ (a3, C3, x

t
3) via B2, B3. Then a1 = a2A1, xt2 = A2x

t
1, and

C2A1 = A2C1 in the first case, and a2 = a3B2, xt3 = B3x
t
2, and C3B2 = B3C2 in the

3
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second case. Substituting yields a1 = a2A1 = a3(B2A1), xt3 = B3x
t
2 = (B3A2)xt1, and

C3(B2A1) = (C3B2)A1 = (B3C2)A1 = B3(C2A1) = B3(A2C1) = (B3A2)C1. It follows
that (a1, C1, x

t
1) ≥ (a3, C3, x

t
3) via B2A1, B3C2, showing that ≥ is a transitive relation.

To show that ≥ respects addition, suppose that (a1, C1, x
t
1) ≥ (a2, C2, x

t
2) via

A1, A2. If (a3, C3, x
t
3) is any ordered triple, then

(a1, C1, x
t
1) + (a3, C3, x

t
3) ≥ (a2, C2, x

t
2) + (a3, C3, x

t
3)

via the matrices

[
A1 0
0 I

]
and

[
A2 0
0 I

]
.

The next proposition is Lemma 2.4 of [2]. For the sake of completeness, we include
the proof here.

Proposition 7 (Left pseudo-Ore condition). Let a ∈ Rn, C1 ∈ Σn, x ∈ Xn, b ∈ Rm,
C2 ∈ Σm, y ∈ Xm. If (a, C1, x

t) ≥ (b, C2, y
t), then [a : C1 : xt] = [b : C2 : yt].

Proof. We have

[a aA1] =
[a 0]

[
Im A1

0t In

]
,

[
Im A2

0 In

] [
0
xt

]
=

[
A2x

t

xt

]
and

[
C2 0
0 C1

] [
Im A1

0 In

]
=

[
Im A2

0 In

] [
C2 0
0 C1

]
,

so by definition we have(
[a aA1],

[
C2 0
0 C1

]
,

[
0t

xt

])
≡

(
[a 0],

[
C2 0
0 C1

]
,

[
A2x

t

xt

])
via U1 =

[
Im A1

0 In

]
and U2 =

[
Im A2

0 In

]
. It follows from the definition of ∼ that

(a, C2, 0
t) and (0, C1, x

t) act as neutral elements for addition, and therefore

(aA1, C1, x
t) ∼ (a, C2, 0

t) + (aA1, C1, x
t)

=

(
[a aA1],

[
C2 0
0 C1

]
,

[
0t

xt

])
≡

(
[a 0],

[
C2 0
0 C1

]
,

[
A2x

t

xt

])
= (a, C2, A2x

t) + (0, C1, x
t)

∼ (a, C2, A2x
t) .

This completes the proof, since, by definition, ≡ implies ∼, and ∼ is transitive.

4
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Example 1. For any vectors b, x and matrices C,D ∈ Σ we have (0, C, xt) ≥ (b,D, 0t)
via the zero matrices of the appropriate size. On the other hand, if b 6= 0 we cannot
have (b,D, 0t) ≥ (0, C, xt) since there does not exist a matrix A1 with b = 0A1, and,
similarly, if x 6= 0, there does not exist a matrix A2 with xt = A20t. 2

The above example shows that we need to introduce a right pseudo-Ore condition.
Note that because the matrices U1, U2 in the definition of the congruence relation ≡
are invertible, the relation ≡ is in fact symmetric.

Definition 8. Let a ∈ Rn, C1 ∈ Σn, x ∈ Xn and b ∈ Rm, C2 ∈ Σm, y ∈ Xm.
Suppose that there exist n×m matrices A1, A2 over R and factorizations xt = A1y

t,
b = aA2. If C1A2 = A1C2, then we write (a, C1, x

t) ≤ (b, C2, y
t).

In this case, we say that (a, C1, x
t) ≤ (b, C2, y

t) via A1, A2.

The relation ≤ is reflexive, transitive, and respects addition (the proofs are dual
to those in Lemma 6). Part (b) of the next proposition establishes that the right
pseudo-Ore condition holds in Σ−1X.

Proposition 9. Let a ∈ Rn, C1 ∈ Σn, x ∈ Xn, b ∈ Rm, C2 ∈ Σm, y ∈ Xm.

(a) We have (a, C1, x
t) ≥ (b, C2, y

t) if and only if (b, C2, y
t) ≤ (a, C1, x

t).

(b) If (a, C1, x
t) ≤ (b, C2, y

t), then [a : C1 : xt] = [b : C2 : yt].

Proof. (a) By a careful application of the definitions, (a, C1, x
t) ≥ (b, C2, y

t) via A1, A2

if and only if a = bA1, yt = A2x
t, and C2A1 = A2C1 and (b, C2, y

t) ≤ (a, C1, x
t) via

B1, B2 if and only if yt = B1x
t, a = bB1, and C2B2 = B1C1. Thus (a, C1, x

t) ≥
(b, C2, y

t) via A1, A2 if and only if (b, C2, y
t) ≤ (a, C1, x

t) via A2, A1.
(b) This follows immediately from part (a) and Proposition 7.

Lemma 10. Let a ∈ Rn, C ∈ Σn, x ∈ Xn, b ∈ Rm, D ∈ Σm, y ∈ Xm. Then

(a) (a, C, xt) ≥ (a, C, xt) + (b,D, 0t) and (a, C, xt) + (0, D, yt) ≥ (a, C, xt);

(b) (a, C, xt) + (b,D, 0t) ≤ (a, C, xt) and (a, C, xt) ≤ (a, C, xt) + (0, D, yt).

Proof. (a) Since

[
C 0
0 D

] [
I
0

]
=

[
I
0

]
C, by definition we have

(a, C, xt) =

(
[a b]

[
I
0

]
, C, xt

)
≥

(
[a b],

[
C 0
0 D

]
,

[
I
0

]
xt
)

= (a, C, xt) + (b,D, 0t) .

5

.



.

54

Since C [I 0] =
[I 0]

[
C 0
0 D

]
, by definition we have

(a, C, xt) + (0, D, yt) =

(
a [I 0],

[
C 0
0 D

]
,

[
xt

yt

])
≥

(
a, C,

[I 0]
[
xt

yt

])
= (a, C, xt) .

(b) This follows immediately from part (a) and Proposition 9 (a).

The following theorem shows that the left and right “pseudo-Ore” conditions
determine the equivalence relation ∼ used in the construction of Σ−1X.

Theorem 11. Let n,m be positive integers, let a ∈ Rn, C ∈ Σn, x ∈ Xn, and let
b ∈ Rm, D ∈ Σm, y ∈ Xm. The following conditions are equivalent:

(1) (a, C, xt) ∼ (b,D, yt);

(2) there exist u ∈ Rk, E,F ∈ Σk, z ∈ Xk, for some positive integer k, such that
(a, C, xt) + (0, E, zt) ≥ (b,D, yt) + (u, F, 0t);

(3) there exist triples (a1, C1, x
t
1) and (b1, D1, y

t
1) such that

(a, C, xt) ≤ (a1, C1, x
t
1), (a1, C1, x

t
1) ≥ (b1, D1, y

t
1), and (b1, D1, y

t
1) ≤ (b,D, yt).

Proof. (1) ⇒ (2): Suppose that (a, C, xt) ∼ (b,D, yt). Then by definition there exist
triples (0, E, zt), (u2, F2, 0

t), (0, E2, z
t
2), (u, F, 0t) such that

(a, C, xt) + (0, E, zt) + (u2, F2, 0
t) ≡ (b,D, yt) + (0, E2, z

t
2) + (u, F, 0t) .

Since the relation ≡ respects addition, if E ∈ Σj and F ∈ Σk with j < k, then we
can add k− j copies of (0, 1, 0) to both (0, E, zt) and (0, E2, z

t
2) while maintaining the

given identity. A similar argument can be given if j > k, so without loss of generality
we can assume that j = k.

It follows from Lemma 10 (a) that

(a, C, xt) + (0, E, zt) ≥ (a, C, xt) + (0, E, zt) + (u2, F2, 0
t)

and that
(b,D, yt) + (0, E2, z

t
2) + (u, F, 0t) ≥ (b,D, yt) + (u, F, 0t) .

Since ≥ is transitive by Lemma 6 and ≡ implies ≥, we have

(a, C, xt) + (0, E, zt) ≥ (b,D, yt) + (u, F, 0t) .

6
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(2) ⇒ (3): Given the triples (0, E, zt) and (u, F, 0t) in condition (2), let

(a1, C1, x
t
1) = (a, C, xt) + (0, E, zt)

and
(b1, D1, y

t
1) = (b,D, yt) + (u, F, 0t) .

Then (a, C, xt) ≤ (a1, C1, x
t
1) by Lemma 10 (b), (a1, C1, x

t
1) ≥ (b1, D1, y

t
1) by hypoth-

esis, and (b1, D1, y
t
1) ≤ (b,D, yt) by Lemma 10 (a).

(3) ⇒ (1): This follows immediately from Propositions 9 and 7.

In the following diagram, we denote ≤ by showing the first triple below the second.
Then (a, C, xt) ∼ (b,D, yt) if and only if there there exist triples (a1, C1, x

t
1) and

(b1, D1, y
t
1) such that the following relationship holds.

(a, C, xt)

≤
�
�
��

(a1, C1, x
t
1)

@
@
@R

≥
(b1, D1, x

t
1)

≤
�
�
��

(b,D, yt)

Corollary 7.11.9 of [3] states if r ∈ R, then r ∈ ker(λ) if and only if for some
C,D ∈ Σ there is a relation of the form[

0 r
0 0

]
=

[
A11 A12

C A22

] [
B11 B12

D B22

]
.

We call this Gerasimov’s criterion, since it has been developed in [4]. Using The-
orem 11, we can extend it to modules. We let µX denote the canonical mapping
µX : X → Σ−1X defined by setting µX(x) = [1 : 1 : x], for all x ∈ X.

Theorem 12. The following conditions are equivalent for the inversive set Σ and
x ∈ X:

(1) x ∈ ker(µX), for the canonical mapping µX : X → Σ−1X;

(2) there exist a ∈ Rn, z ∈ Xn, and C,D ∈ Σn, for some n > 0, such that

(1, 1, 0) + (0, D, zt) ≥ (1, 1, x) + (a, C, 0t) ;

(3) there exist relations of the form[
x
0t

]
=

[
a11 a12

C A

] [
yt

zt

]
and

[
a11 a12

C A

] [
B
D

]
=

[
0
0

]
for vectors a11, a12 over R, y, z over X, and matrices A,B,C,D such that C,D ∈ Σ.
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Proof. (1) ⇒ (2): Since x ∈ ker(µX) if and only if (1, 1, 0) ∼ (1, 1, x), this is a direct
application of Theorem 11.

(2) ⇒ (3): Suppose that (1, 1, 0) + (0, D, zt) ≥ (1, 1, x) + (a, C, 0t) via A1, A2.
Writing A1 and A2 in block form, there exist a11, b11 ∈ R, a12, a21, b12, b21 ∈ Rn, and
A,B ∈Mn(R) such that

[1 0] =
[1 a]

[
a11 a12

at21 A

] [
b11 b12

bt21 B

] [
0
zt

]
=

[
x
0t

]
and [

1 0
0 C

] [
a11 a12

at21 A

]
=

[
b11 b12

bt21 B

] [
1 0
0 D

]
.

This gives us the following equations:

a11 + a · at21 = 1 a12 + aA = 0 b12 · zt = x Bzt = 0t

a11 = b11 a12 = b12D Cat21 = bt21 CA = BD .

Substituting a12 = b12D in the equation a12 + aA = 0, we only need to use the
following equations in order to obtain the desired result:

aA+ b12D = 0 CA−BD = 0 b12 · zt = x Bzt = 0t .

These equations show that[
a b12

C −B

] [
A
D

]
=

[
0
0

]
and

[
a b12

C −B

] [
0
zt

]
=

[
x
0t

]
.

(3) ⇒ (1): Suppose that there are relations of the form[
x
0t

]
=

[
a11 a12

C A

] [
yt

zt

]
and

[
a11 a12

C A

] [
B
D

]
=

[
0
0

]
,

where C ∈ Σn. D ∈ Σm, A,B are n × m matrices over R, a11 ∈ Rn, a12 ∈ Rm,
y ∈ Xn, and z ∈ Xm. Then CB = −AD, and so it follows from the left pseudo-Ore
condition that

(−a11B,D, z
t) ∼ (−a11, C,−Azt) .

Since −a11B = a12D, we have

(−a11B,D, z
t) = (a12D, ImD, z

t) ∼ (a12, Im, z
t) ,
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by an easy application of the left pseudo-Ore condition. Similarly, we have −Azt =
Cyt, and so

(a11, C,−Azt) = (a11, CIn, Cy
t) ∼ (a11, In, y

t) .

Therefore the sum

(a11, In, y
t) + (a12, Im, z

t) ∼ (a11, C,−Azt) + (−a11, C,−Azt) ∼ (a11 − a11, C,−Azt)

must belong to Σ−1X0.
It follows easily from the left pseudo-Ore condition that (a, In, y

t) ≥ (1, 1, a · yt)
and (a, C, yt) + (a, C, zt) ≥ (a, C, (y + z)t), for any a ∈ Rn, C ∈ Σn, and y, z ∈ Xn.
We conclude that

(1, 1, x) = (1, 1, a11·yt+a12·zt) ∼ (1, 1, a11·yt)+(1, 1, a12·zt) ∼ (a11, In, y
t)+(a12, Im, z

t)

belongs to Σ−1X0, and therefore x ∈ ker(µX).
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fundamental identity), and {xyz} = {zyx} (this relation is called a commutative
identity, since xy = {xey} = {yex} = yx) and next the new triple product [xyz]
given by

[xyz] = {xyz} − {yxz}

defines a Lie triple system.
Briefly summarizing this article, we will generalize these results and exhibit

examples of Lie (super)algebras associated with generalized Jordan triple sys-
tems. Toward to its applications, in particular, we will give a construction
of symmmetric (super)spaces with an almost complex structure (i.e., eqipped
with Nijenhuis operator). And we will exhibit an idea of bisymmetric spases
associated with our constructions.

Roughly describing, we have an illustration for our concept ;
Algebraic structures ⇐⇒ Geometric structures.

For examples, it seems that there are certain algebraic structures associated
with symmetric, R-symmetric, homogeneous spaces, totally geodesic manifold,
and symmetric domains, etc.

1 Definitions and Results

In this paper triple systems have finite dimension being defined over a field Φ
of characteristic 6= 2 or 3, unless otherwise specified. In order to render the
paper as self-contained as possible, we recall first the definition of a generalized
Jordan triple system of second order (for short GJTS of 2nd order) ([41]-[45]) .

A vector space V over a field Φ endowed with a trilinear operation V × V ×
V → V , (x, y, z) 7−→ (xyz) is said to be a GJTS of 2nd order if the following
conditions are fulfilled:

(ab(xyz)) = ((abx)yz)− (x(bay)z) + (xy(abz)), (1)

K(K(a, b)x, y)− L(y, x)K(a, b)−K(a, b)L(x, y) = 0, (2)

where L(a, b)c := (abc) and K(a, b)c := (acb)− (bca).
A Jordan triple system (for short JTS) satisfies (1) and the following condi-

tion
(abc) = (cba), i.e., K(a, c)b = 0. (3)

The JTS is a special case in the GJTS of 2nd order since K(x, y) ≡ 0.
We next can generalize the concept of GJTS of 2nd order as follows (see

[13], [14], [18], [22], [28], [36] [63] and the earlier references therein).
For ε = ±1 and δ = ±1, a triple product that satisfies the identities

(ab(xyz)) = ((abx)yz) + ε(x(bay)z) + (xy(abz)), (4)

K(K(a, b)x, y)− L(y, x)K(a, b) + εK(a, b)L(x, y) = 0, (5)

where
L(a, b)c := (abc), K(a, b)c := (acb)− δ(bca), (6)

is called an (ε, δ)−Freudenthal−Kantor triple system (for short (ε, δ)-FKTS).
An (ε, δ)-FKTS is said to be unitary if Id ∈ {K(a, b)}span.
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A triple system satisfying only the identity (4) is called a generalized FKTS
(for short GFKTS), while the identity (5) is called the second order condition
(this condition needs to construct of 5-graded Lie (super)algebras).
Remark. From the relation Eq. (6), we note that

K(b, a) = −δK(a, b). (7)

A triple system is called a (α, β, γ) triple system associated with a bilinear
form if

(xyz) = α < x, y > z + β < y, z > x+ γ < z, x > y,

where < x, y > is a bilinear form such that < x, y >= κ < y, x >, κ = ±1,
α, β, γ ∈ Φ.

From now on we will mainly consider this type of triple system.
An (ε, δ)-FKTS is said to be balanced if there is a bilinear form < x, y >∈ Φ∗

such that K(x, y) =< x, y > Id, that is, dim {K(x, y)}span = 1 holds.
Remark. We note that a balanced triple system (i.e., it fulfills K(x, y) =<
x, y > Id) is unitary, since Id ∈ {K(x, y)}span.

Triple products are denoted by (xyz), {xyz}, [xyz] and < xyz > upon their
suitability.
Remark. We note that the concept of GJTS of 2nd order coincides with
that of (−1, 1)-FKTS. Thus we can construct the corresponding Lie algebras
by means of the standard embedding method ([6], [13]-[19], [21], [22], [25], [27],
[43]).
For δ = ±1, a triple system (a, b, c) 7→ [abc], a, b, c ∈ V is called a δ-Lie triple
system (for short δ-LTS) if the following three identities are fulfilled

[abc] = −δ[bac],
[abc] + [bca] + [cab] = 0,

[ab[xyz]] = [[abx]yz] + [x[aby]z] + [xy[abz]],
(8)

where a, b, x, y, z ∈ V . An 1-LTS is a LTS while a −1-LTS is an anti-LTS, by
([14]). Note that the set L(V, V ) of all left multiplications L(x, y) of V is a Lie
subalgebra of Der V , where we denote by L(x, y)z = [xyz].
Proposition 1.1. ([13]-[16], [22]) Let (U(ε, δ), < xyz >) be an (ε, δ)-FKTS.
If J is an endomorphism of U(ε, δ) such that J < xyz >=< JxJyJz > and
J2 = −εδId, then (U(ε, δ), [xyz]) is a LTS (if δ = 1) or an anti-LTS (if δ = −1)
with respect to the product

[xyz] :=< xJyz > −δ < yJxz > +δ < xJzy > − < yJzx > . (9)

Remark. Note that for the case of ε = −1, δ = 1 and K(x, y) = 0, we have a
special case in Prop.1.1, that is, it implies that J = Id, {xyz} is the JTS and
[xyz] = {xyz} − {yxz} is the LTS described in Introduction.
Corollary. ([13]) Let U(ε, δ) be an (ε, δ)-FKTS. Then the vector space T (ε, δ) =
U(ε, δ)⊕ U(ε, δ) becomes a LTS (if δ = 1) or an anti-LTS (if δ = −1) with re-
spect to the triple product[(

a

b

)(
c

d

)(
e

f

)]
=

(
L(a, d)− δL(c, b) δK(a, c)

−εK(b, d) ε(L(d, a)− δL(b, c))

)(
e

f

)
. (10)

3

.



.

62

Thus we can obtain the standard embedding Lie algebra (if δ = 1) or Lie
superalgebra (if δ = −1), L(U(ε, δ)) = D(T (ε, δ), T (ε, δ)) ⊕ T (ε, δ), associated
with T (ε, δ) where D(T (ε, δ), T (ε, δ)) is the set of inner derivations of T (ε, δ);

D(T (ε, δ), T (ε, δ)) :=

{(
L(a, b) δK(c, d)

−εK(e, f) εL(b, a)

)}
span

,

T (ε, δ) :=

{(
x

y

)∣∣∣∣x, y ∈ U(ε, δ)

}
span

.

We use the following notation:

k := {K(x, y) ∈ End U(ε, δ)|x, y ∈ U(ε, δ)} and

{EFG} := EFG+GFE, ∀E,F,G ∈ k.

Then, we may make the structure of a JTS k with respect to the triple product
{EFG} ∈ k, hence [EFG] = {EFG} − {FEG} has a structure of LTS ([20]).

We next introduce an analogue of Nijenhuis tentor in differential geometry
defined by

N(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2[X,Y ],∀X,Y ∈ T (ε, δ)

and J =

(
0 ε
−δ 0

)
, that is J2 = −εδId, hence if J2 = −Id, then this (the

case of εδ = 1) has a structure of allmost complex.
Proposition 1.2. Let U be a (ε, δ)-FKTS, T (ε, δ) be the δ-LTS and L(U) be
the standard embedding Lie (super)algebra associated with U. Then the following
are equivalent:

(i) N(X,Y ) = 0,∀X,Y ∈ T (ε, δ),
(ii) εδL(y, x)− εL(x, y) = K(x, y), ∀x, y ∈ U(ε, δ).

This J ∈ End T (ε, δ) may generalize on J̃ ∈ End L(U) defined by

J̃ := JD(X,Y )J−1 ⊕ JZ, ∀X,Y, Z ∈ T (ε, δ).

Then we note that J̃ has an interesting property, for example, an automorphism
of L(U) associated with U .
Proposition 1.3. For a (ε, δ)-FKTS U and L(U) as in above Proposition,
assuming ε = δ and K(x, y) = L(y, x) − εL(x, y), then the elements f =(

0 1
0 0

)
, g =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
∈ sl(2) (i.e., [f, g] = h, [f, h] =

−2f, [g, h] = 2g ) are derivations of L(U).
Remark. We note that L(U) = L(U(ε, δ)) := L−2⊕L−1⊕L0⊕L1⊕L2 is the
five graded Lie (super)algebra such that U(ε, δ)⊕ U(ε, δ) = L−1 ⊕ L1 =T (ε, δ)
(δ-LTS), L−2 = k (JTS) and D(T (ε, δ), T (ε, δ)) = L−2⊕L0⊕L2 (the derivation
of T (ε, δ)) equipped with [Li, Lj ] ⊆ Li+j and L−1⊕L1 = L(U)/L−2⊕L0⊕L2. In
Introduction, we had used the notation g = g−1⊕g0⊕g1 instead of L−1⊕L0⊕L1.
This Lie (super)algebra construction is one of reasons to study nonassociative
algebras and triple systems without using root systems (for a Lie superalgebra,
refer to ([9], [12], [60])). Also this construction can be represented by the concept
of a normal triality algebra (see [34], [35]).

This section is a survey of our papers with respect to the triple systems and
the construction of Lie (super)algebras mainly, if it need, the readers would like
to see the earlier our references therein.
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2 Examples of (ε, δ)-JTS

We will consider here examples of the special case defined by bilinear forms <
x, y >, that is, an (ε, δ)-JTS of (α, β, γ) triple systems equipped with K(x, y) ≡
0. Moreover, we give two examples (Prop. 2.2 and Prop.2.3) without the cases
of (ε, δ)-JTS.
Example 2.1. Let V be a vector space with a symmetric bilinear form <
x, y >. Then

< xyz >=< x, y > z+ < y, z > x− < z, x > y

defines on V a (−1, 1)-JTS.
Note that (−1, 1)-JTS is same as the JTS.
Example 2.2. Let V be a vector space with an anti-symmetric bilinear form
< x, y >. Then

< xyz >=< x, y > z+ < y, z > x− < z, x > y

defines on V a (1,−1)-JTS.
Example 2.3. Let V be a vector space with a symmetric bilinear form <
x, y >. Then

< xyz >=< x, y > z− < y, z > x

defines on V a (−1,−1)-JTS.
Example 2.4. Let V be a vector space with an anti-symmetric bilinear form
< x, y >. Then

< xyz >=< x, y > z− < y, z > x

defines on V a (1, 1)-JTS.
Example 2.5. Let V be a set of alternative matrix Asym(n,Φ) = {x|tx =
−x}, where tx denote the transpose matrix of x. Then

< xyz >= xtyz − εztyx, where ∀ x, y, z ∈ V

defines on V a (ε,−ε) JTS, that is, the case of ε = −1 ⇒ JTS.
Remark. Let V be the set of p×q matrixMat(p, q; Φ). Then this vector space
V is a JTS with respect to the product {xyz} = xtyz + ztyx, ∀x, y, z ∈ V .
Proposition 2.1. Let (U,< xyz >) be an (ε, δ)-JTS. Then the triple system
is a δ-LTS with respect to the new product

[xyz] =< xyz > −δ < yxz > . (11)

In the next section 3 subsection we study the case of an (ε, δ)-FKTS, but we
give first two examples which are not (ε, δ)-JTS as it follows.
Proposition 2.2. Let (U,< xyz >) be a triple system with < xyz >=< y, z >
x and < x, y >= −ε < y, x >. Then this triple system is an (ε, δ)-FKTS.

Proposition 2.3. ([16], [18]) Let U be a balanced (1, 1)-FKTS satisfying <<
xxx >, x >≡ 0 (identically) and < x, y > is nondegenerate. Then U has a triple
product defined by

< xyz >=
1

2
(< y, x > z+ < y, z > x+ < x, z > y). (12)
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Note that the balanced (1, 1)-FKTS induced from an exceptional Jordan
algebra is closely related to the 56 dimensional meta symplectic geometry due
to H. Freudenthal ([13], [15], [16], [18] and the earlier references therein). Also
the correspondence of a quaternionic symmetric space and the balanced (1,1)
FKTS has been studied in ([5]). On the other hand, for (−1,−1) -FKTS, see
([6] and[7], [30], [31]).

3 Examples of Lie (super)algebras associated with
(ε, δ) Freudenthal-Kantor triple systems

We will exhibit the examples of some triple systems and Lie (super)algebras
associated with their triple systems. Unless otherwise stated, all Lie (super)al-
gebras considered here are complex and finite dimensional.
Example a). C(n+ 1) type is of dimension dimC(n+ 1) = 2n2 + 5n+ 1.

Let U be the set of matrices M(1, 2n; Φ). Then, by Example 2.2, it follows
that the triple product

L(x, y)z =< xyz >:=< x, y > z+ < y, z > x− < z, x > y

such that the bilinear form fulfills < x, y >= − < y, x >, is a (1,−1)-JTS, since
K(x, y) ≡ 0 (identically). Furthermore, the standard embedding Lie superalge-
bra is 3-graded and of C(n + 1) type. For the extended Dynkin diagram, we
obtain

L−1 ⊕ L0 ⊕ L1 :=

{(
L(a, b) 0

0 εL(b, a)

)∣∣∣∣ ε = 1 = −δ

}
span

⊕
{(

e

f

)}
span

∼=

⊗ α1 α2 α3 αn αn+1

‖ > ◦ − ◦ − −−−− ◦ <= ◦

⊗ α0

= C(n+ 1) type (α1 ⊗ deleted).

Also, we obtain

L0 :=

{(
L(a, b) 0

0 εL(b, a)

)∣∣∣∣ ε = 1 = −δ

}
span

∼=

α2 α3 αn αn+1

◦ − ◦ − −−−− ◦ <= ◦

= Cn ⊕ ΦId (α1 ⊗ and α0 ⊗ deleted).

Thus the last diagram is obtained from the extended Dynkin diagram of C(n+1)
type by deleting α1 ⊗ and α0 ⊗.
Example b). B(n, 1) and D(n, 1) type are of dimension dimB(n, 1) = 2n2 +
5n+ 5 and dimD(n, 1) = 2n2 + 3n+ 3, respectively.

Let U be the set of matrices M(1, l; Φ). Then, by straihtfoward calculations,
it follows that the triple product

L(x, y)z =< xyz >:=
1

2
(< x, y > z− < y, z > x+ < z, x > y)
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such that the bilinear form fulfills < x, y >=< y, x > is a (−1,−1)-FKTS. Fur-
thermore, the standard embedding Lie superalgebra is 5-graded and of B(n, 1)
type if l = 2n + 1, or of D(n, 1) type if l = 2n. For the extended Dynkin
diagram, we obtain from the results of § 1 the following.

For the case of B(n, 1) type we have

L−2 ⊕ L0 ⊕ L2 := D(T (−1,−1), T (−1,−1)) ={(
L(a, b) δK(c, d)

−εK(e, f) εL(b, a)

)∣∣∣∣ ε = −1 = δ

}
span

∼=

α0 α1 α2 αn αn+1

◦ => ⊗− ◦ −−−−− ◦ => ◦

= A1 ⊕Bn type (α1 ⊗ deleted).

Also, we obtain

L0 :=

{(
L(a, b) 0

0 εL(b, a)

)∣∣∣∣ ε = −1 = δ

}
span

∼=

α2 α3 αn αn+1

◦ − ◦ − −−−− ◦ => ◦

= Bn ⊕ ΦId (α1 ⊗ and α0 ◦ deleted).

Thus the last diagram is obtained from the extended Dynkin diagram of B(n, 1)
type by deleting α1 ⊗ and α0 ◦.

Similarly, for the case ofD(n, 1) type we have L−2⊕L0⊕L2
∼= A1⊕Dn, L0

∼=
Dn ⊕ ΦId. We note that this triple system is balanced and with a complex
structure of Nijenhuis tensor zero, sinceK(x, y) =< x, y > Id = L(x, y)+L(y, x)
(c.f. [36]).
Remark. The examples a),b) are simple triple systems, since the bilinear
forms < x, y > are nondegenerate. Indeed, if I 6= 0 is an ideal of U then, by
straightforward calculations, from the fact that < I,U > U ⊆ I and < , > is
nondegenerate, we have I = U . Hence U is simple.
Remark. We note that the case of balanced is discussed in ([18], [28]). On
the other hand, for the construction of simple exceptional Lie algebras G2, F4,
E6, E7, E8, refer to ([16], [18], [21]). Also, for the construction of simple Lie
superalgebras G(3), F (4), D(2, 1, α), P (n), Q(n),H(n), S(n) and W (n), refer
to ([22], [25], [27], [31]). Of course, these construction are created from the
concept of triple systems without using systems of roots. Thus, moreover, these
examples imply that our methods may apply the symmetric superspace (the
case of δ = −1) as well as the structures (see, [5], [46]) of the symmetric spaces
(the case of δ = 1), however we will not go into the details.
In the rest of this section, we will consider the constructions of simple B3-type
Lie algebra associated with several triple systems (the case of ε = −1 and δ = 1),
more easily. That is, we will give several examples; (c) the case of a JTS (i.e.,
(−1, 1)-FKTS with K(x, y) ≡ 0), (d) the case of a GJTS of 2nd order (i.e.,
(−1, 1)-FKTS with dim{K(x, y)}span = 1), (e) the case of a GJTS of 2nd order
(i.e, (−1, 1)-FKTS with dim{K(x, y)}span = 3).
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Example c). We study the case of g−1 = U = Mat(1, 5;Φ). Hereafter in this
section, as a reason of traditional notation, we often would like to denote by gi
instead of Li, (i = 0,±1,±2) and by {xyz} instead of < xyz >.

In this case, g−1 is a JTS with respect to the product

{xyz} = xtyz + ytzx− ztxy, ∀ x, y, z ∈ g−1

where tx denotes the transpose matrix of x.
By straightforward calculations, the standard embedding Lie algebra L(U) =

g can be shown to be a 3-graded B3-type Lie algebra with g = g−1 ⊕ g0 ⊕ g1
and a LTS T (U) = U ⊕ U = g−1 ⊕ g1. Thus, we have

g0 = Der U ⊕Anti−Der U ∼= B2 ⊕ ΦH, where H =

(
Id 0
0 −Id

)
.

Here in view of the relations [S(x, y), L(a, b)] = L(S(x, y)a, b)+ L(a, S(x, y)b),
and [A(x, y), L(a, b)] = L(A(x, y)a, b) −L(a,A(x, y)b) for all L(a, b) ∈ End U ,
when ε = −1, δ = 1, we use the following notations;

Der U := {L(x, y)− L(y, x)}span,

Anti−Der U := {L(x, y) + L(y, x)}span,

g0 =

{(
L(x, y) 0

0 − L(y, x)

)}
span

= {S(x, y) +A(x, y)

}
span

where S(x, y) := L(x, y) − L(y, x) ∈ Der U, A(x, y) := L(x, y) + L(y, x) ∈
Anti−Der U, this case is ε = −1 and δ = 1.
Example d). We study the case of g−1 = U = Mat(2, 3;Φ). In this case, g−1

is a GJTS of 2nd order (i.e., (−1, 1)-FKTS) with dim {K(x, y)}span = 1 with
respect to the product

{xyz} = xtyz + ztyx− ztxy, ∀ x, y, z ∈ g−1.

By straightforward calculations, it can be shown that the standard em-
bedding Lie algebra L(U) = g is a 5-graded B3-type Lie algebra with g =
g−2⊕g−1⊕g0⊕g1⊕g2 and dim g−2 = dim g2 = dim {K(x, y)}span = 1. Thus,
we have

g0 = Der U ⊕Anti−Der U ∼= A1 ⊕A1 ⊕ ΦH, where H =

(
Id 0
0 −Id

)
.

Furthermore, we obtain a LTS T (U) of dim T (U) = dim (g−1 ⊕ g1) = 12,

Der(g−1 ⊕ g1) = g−2 ⊕ g0 ⊕ g2 = A1 ⊕A1 ⊕A1
∼= Der T (U).

Also, in this case, we note that T (U) = L(U)/Der T (U) = g/(g−2 ⊕ g0 ⊕ g2)(=
g−1⊕g1) is the tangent space of a quaternion symmetric space of dimension 12,
since T (U) is a Lie triple system associated with g−1.
Example e). Third, we study the case of g−1 = U = Mat(1, 3;Φ). In this case,
g−1 is a GJTS of 2nd order (i.e., (−1, 1)-FKTS) with respect to the product

{xyz} = xtyz + ztyx− ytxz,K(x, y)z = {xzy} − {yzx}, ∀ x, y, z ∈ g−1.
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By straightforward calculations, the standard embedding Lie algebra L(U) = g
can be shown to be a 5-graded B3-type Lie algebra with g = g−2 ⊕ · · · ⊕ g2 and
dim g−2 = dim g2 = 3. Thus, we have

g0 = Der U ⊕Anti−Der U ∼= A2 ⊕ ΦH, g−2 = {K(x, y)}span = Alt(3, 3;Φ).

Furthermore, we obtain a LTS T (U) of dim T (U) = dim (g−1 ⊕ g1) = 6,

Der(g−1 ⊕ g1) = g−2 ⊕ g0 ⊕ g2 = A3
∼= Der T (U).

This case g−2 = {K(x, y)}span = k has the structure of a JTS (cf. section 2).
Remark. We remark that the cases (a)and (b) (resp. (c),(d),(e)) are δ = −1
(resp. δ = 1).
Remark. For the root system ∆ = {α1, α2, α3, α1 + α2, α1 + α2 + α3, α2 +
α3, α1 + α2 + 2α3, α2 + 2α3, α1 + 2α2 + 2α3}and the highest root −ρ = {α1 +
2α2 + 2α3} of the simple Lie algebra B3, the case of (c) means that g−1 =
{α1, α1+α2, α1+α2+α3, α1+α2+2α3, α1+2α2+2α3} and g−2 = {0}, the case
of (d) means that g−1 = {α2, α1+α2, α2+α3, α1+α2+α3, α1+α2+α3, α2+2α3}
and g−2 = {−ρ}, the case of (e) means that g−1 = {α3, α1 + α2 + α3, α2 + α3}
and g−2 = {α1 + α2 + 2α3, α2 + 2α3, α1 + 2α2 + 2α3}.

4 Mathematical physics Remarks

In this section, we give several references of mathematical physics in our works.
We note that there are applications toward the Yang-Baxter equations asso-
ciated with triple systems ([26], [39], [57]) and also toward the field theory
associated with Hermitian triple systems ([37], [38]). For other mathematical
physics, it seems that the books ([28], [33]) are useful.

5 History from a certain personal viewpoint

For a mathematical history, in particular for Jordan rivers, we describe belows:
This brief history (with respect to nonassociative algebras) is a story from au-
thor’s personal aspect (judgement). Triple systems (ternary algebras) have first
been appeared from Prof. N. Jacobson and continued by Profs. O. Loos, K.
Meyberg and E. Neher of students of Prof. M. Koecher in Germany, also cer-
tain triple systems associated with the geometry of 56 dimensional due to Prof.
Freudenthal have been studied by Prof. J. Faulkner (resp. K. Meyberg) of the
student of Prof. N. Jacobson (resp. Prof. M. Koecher ).

On the other hand, there is a history;
H. Freudenthal (Netherlands) −− >K. Yamaguti (Japan) or I. L. Kantor

(Russian and Sweden, he was born in Belarus) −− > Author (N. Kamiya)
−− > D. Mondoc (but these arrows are no students), however, Dr. Mondoc is
only a student of Prof. Kantor in Sweden.
Profs. O. Loos and E. Neher in the student of Prof. M. Koecher in Germany
are working in Jordan triple systems and Jordan pairs. Profs. Kantor, Yam-
aguti, S. Okubo and author(N. Kamiya) are studying in their generalizations,
for example, refer to N. Kamiya and S. Okubo ”Representation of (α, β, γ) triple
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systems,”, Linear and Multilinear Algebras, 58 no.5-6 (2010) 617-643. This his-
tory is a story whithout using concept of root systems and Cartan matrix in Lie
algebras, in particular, is a study for triple systems.

Note that there are a lot of mathematician in nonassociative algebras (for
Lie algebras), but a little groups in triple systems or Jordan algebras. For
example, Profs. E. Zelmanov, K. McCrimmon, B. Allison, V. Kac, I. Shestakov,
H. Petersson, M. Racine, H. Asano, I. Satake, M. C. Myung, A. Elduque, C.
Martinez, S. Gonz̀alez, S. Okubo and author, may be, only a few. Furthermore
in addition, the book ”A Taste of Jordan Algebras” (Springer, 2003) written by
Prof. K. McCrimmon of a student in N. Jacobson is described about a history of
the Jordan river. It here emphasize that this historical survey of certain Jordan
algebras until the end of the 20th century and the beginning of 21th century
is my (author) aspect (viewpoint). In addition to above river, for a certain
example, for our imaginative illustrations with respect to a generalization of
numbers;

(]) R → C → H → O(octonion) → H3(O)(Jordan algebra of 27 dim) →

M(H3(O))(metasymplectic geometry of 56 dim) →

T(H3(O))(symmetric space of 112 dim) →

E8(exceptional simple Lie algebra of 248 dim).

On the other hand, there is other river also,

(]]) O → C⊗O, H⊗O and O⊗O (Freudenthal′s magic square) →

T(O⊗O)(symmetric space of128 dim) → E8.

For another way, there is a river of Prof. Tits (called Tits’s construction) as
follows.

(]]]) The case A = A0 ⊗ J0 ; (with dim A = 7 × 26, dim Der (A) = 66),
where the base field Φ is an algebraically closed field of characteristic 0.

L(A) = Der(A) ⊕ A ∼= E8, Der(A) = DerA ⊕ DerJ ∼= G2 ⊕ F4 =<
D(X,Y ) >span . Here A0 denote {x ∈ O|trace x = 0} and J0 = {x ∈
H3(O)|Trace x = 0}. For the product of A, X ◦ Y = (a ∗ b) ⊗ (x ∗ y) and
with respect to the Lie product of L(A), [X,Y ] = D(X,Y ) +X ◦ Y , then the
vector space (A, ◦) has an algebraic structure of satisfying D(X ◦Y, Z)+D(Y ◦
Z,X) +D(Z ◦X,Y ) = 0, where X,Y, Z ∈ A ([19] and see the earlier references
therin).

If we set J = H3(O) → H3(A) (= B), then we have the following table;

dimB = 1 dimB = 6 dimB = 9 dimB = 15 dimB = 27
dimA = 1 0 A1 A2 C3 F4

dimA = 2 0 A2 A2 ⊕A2 A5 E6

dimA = 4 A1 C3 A5 D6 E7

dimA = 8 G2 F4 E6 E7 E8

Here note that L(A)/(G2 ⊕ F4) is a reductive homogeneous space with 182
dimension.

It seems that there are several researchers group’s tradition for these study
and furthermore, for a nonassociative world of 21th century, Spanish, Portuguese
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and middle Europe scholars groups will glow with respect to the study (may be,
Prof. Elduque’s group mainly).

For algebraic structures of nonassociative subject (AMS classification 17)
related with geometry, about 20th century, roughly speaking, we may describe
as follows, for example (in my opinion);
Jordan algebras researchers (E. Artin origin),
Lie algebras researchers (N. Jacobson origin).
In summarizing about Jordan algebras or triple systems, we have the follow-

ing diagrams (a generalization of complex and quaternionic numbers):

octonion, pseudo octonion algebras and triple systems =⇒

Jordan algebras +Lie (super)algebras +symmetric composition algebras

=⇒mathematical algebras (author’s new phrase)

In final comments (although they had described in the introduction), also we
emphasize that nonassociative algebras are rich in algebraic structures, and
they provide important common ground for various branches of mathematics,
not only pure algebra and mathematical physics (for example, Pierce decom-
positions, Yang-Baxter equations and quark theory), but also analysis (Jordan
C∗ algebras or JB∗ triple), topology (racks or quandles), and geometries ( gen-
eralized symmetric spaces, convex cones or bounded symmetric domaines, in
particular). Hence, in future aspect, it seems that the triple systems (or ternary
product) without using unit elements are useful concept for several subjects of
sciences as well as the situation of symmetric spaces.

6 Geometric structures

6.1 A generalized curvature and torsion tensors

Let L = L(U(ε, δ)) = L(W,W )⊕W be the Lie algebra defined from a δ- LTS as
in the section one, that is, the δ-LTS W = T (ε, δ) = L−1 ⊕ L1 is induced from
L−1 = U(ε, δ) (as L−1 has the structure of a (ε, δ)-FKTS), where ε, δ = ±1.

We now introduce a generalization of covariant derivative 5 in differential
geometry as follows; 5 : L → End L defined by

5XY = [X,Y ] = −δ[Y,X],
5X [Y, Z] = [Y ZX] = −δ[ZY X],
5[X,Y ]Z = −[XY Z] = δ[Y XZ],
5[X,Y ][V, Z] = [[V, Z], [X,Y ]] = −δ[[X,Y ], [V, Z]], for any X,Y, Z, V ∈ W.

Furtheremore, a generalized curvature tensor defined by

Cδ(X,Y ) = 5X 5Y −δ 5Y 5X −5[X,Y ] (13)

is identically zero, i.e., Cδ(X,Y ) = 0 in L, for any X,Y ∈ W. Indeed, we
demonstrate the proof below.

First we calculate

Cδ(X,Y )Z = (5X 5Y −δ 5Y 5X)Z −5[X,Y ]Z

= 5X [Y, Z]− δ 5Y [X,Z] + [XY Z]
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= [Y ZX]− δ[XZY ] + [XY Z]

= [Y ZX] + [ZXY ] + [XY Z] = 0.

Second, it follow

Cδ(X,Y )[V, Z] = (5X 5Y −δ 5Y 5X)[V, Z]−5[X,Y ][V, Z]

= [X, [V ZY ]]− δ[Y, [V ZX]] + δ[[X,Y ], [V, Z]]

= [X,L(V, Z)Y ]− δ[Y, L(V, Z)X]− L(V, Z)[X,Y ] = 0

(by [Y, L(V, Z)X] = −δ[L(V, Z)X,Y ] and [[X,Y ], [V, Z]] = −δ[[V, Z], [X,Y ]])
for any X,Y, Z, V ∈ T (ε, δ).

However a generalized torsion tensor defined by

Sδ(X,Y ) = 5XY − δ 5Y X − [X,Y ] (14)

is not zero, since it gives Sδ(X,Y ) = [X,Y ]− δ[Y,X]− [X,Y ] = [X,Y ].
Note that the case of δ = 1 is appeared in ([36]).
In final comments of this section, for δ-LTS W = T (ε, δ), we recall the

Nijenhuis operator in the section one;

N(X,Y ) = [JX, JY ] + J2[X,Y ]− J [JX, Y ]− J [X, JY ],

where J is an almost complex structure on W , this concept (the case of δ = 1)
is appeared in ([36]), hence we may consider a generalization with respect to
the super symmetric space (the case of δ = −1).

If we set J =

( √
−1 0
0 −

√
−1

)
, or J =

(
0 1
1 0

)
, then we have J2 =

−Id, or J2 = Id respectively, and it seems that there is a twisted or a straight
(para complex) property in the sence of W. Bertram.

6.2 Magic square table of exceptional simple Lie algebras

Following ([34],[35]), note that we can construct the exceptional simple Lie al-
gebras E6, E7, E8, F4 and G2 associated with pre-structurable or normal triality
algebras A, that is, the construction of 5-graded Lie algebras L(A) = g =
g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 and g−1 = A. Of course, as the construction in section
one, we have certain structure of triple systems (ternary algebras) with rspect
to the algebra A.

We now denote that the base field Φ is an algebraically closed field of char-
acteristic 0, and a Cayley algebra by O.

I) A = O⊗O (tensor product case, dim A = 64, dim g−2 = dim g2 = 14).
For subalgebras of A, if we use the notation of A = A1 ⊗A2, dim A1, dim A2,
then the Lie algebras obtained from their subalgebras are following:

L(A) = g−2⊕g−1⊕g0⊕g1⊕g2 ∼= E8, g0 ∼= D7⊕gl(1), g−2⊕g0⊕g2 ∼= D8, A = g−1

dimA2\dimA1 1 2 4 8
1 A1 A2 C3 F4

2 A2 A2 ⊕A2 A5 E6

4 C3 A5 D6 E7

8 F4 E6 E7 E8
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For this case’s E8, considering the Extended Dynkin diagram, we have
g−1 ⊕ g1 ∼= L(A)/(g−2 ⊕ g0 ⊕ g2) = E8/D8 with dim (g−1 ⊕ g1)=128;
}− ◦− ◦− ◦− ◦− ◦− ◦− ◦ , ◦ omitted ∼= D8, and } is highest root.

|
◦

II) A =

(
α a
b β

)
(balanced case, dim A = 56, dim g−2 = dim g2 =

1), where a, b ∈ H3(O) (exceptional Jordan algebra with 27 dimension) and
α, β ∈ F . The Lie algebra constructed from this algebra A is the following.
L(A) ∼= E8, g−2 ⊕ g0 ⊕ g2 ∼= E7 ⊕A1, g0 ∼= E7 ⊕ gl(1), A = g−1.
To change the notation H3(O) → H3(A)(= B), here A is Hurwitz algebras over

F . ∀
(

α a
b β

)
∈

(
F B
B F

)
= A, with respect to the dimB, Lie algebras

L(A) obtained from B are the following.

dimB 1 6 9 15 27
dimA 4 14 20 32 56

dimL(A) 14 52 78 133 248
L(A) G2 F4 E6 E7 E8

For this case’s E8, considering the Extended Dynkin diagram, we have
g−1 ⊕ g1 ∼= L(A)/(g−2 ⊕ g0 ⊕ g2) = E8/(A1 ⊕ E7) with dim g−1 ⊕ g1=112;

}− ◦ − ◦ − ◦ − ◦ − ◦ − ◦ −◦, ◦ omitted ∼= A1 ⊕ E7.
|
◦

Remark. This construction of type II with dim A = 56 has been first studied
by H. Freudenthal (called a metasymmetric geometry equipped with notations
of P ×Q and {P,Q}). And this concept is characterized by a triple system (or
a ternary algebra) called a generalized Zorn’s vector matrix ([13]-[16],[18],[35]
the references of therein).

6.3 Bisymmetric spaces associated with exceptional sim-
ple Lie algebras

Following the books due to O. Loos or W. Bertram with respect to symmetric
spaces, it is known to have associated to a symmetric space M = G/H a Lie
triple system T (as the tangent space of the symmetric space is a Lie triple
system).

We consider a concept of bisymmetric space (Bα, Bβ , Bγ , Bδ) in Lie triple
subsystems pair defined as follows:

(I) dim Bδ/dim Bγ = dim Bγ/dim Bβ = dim Bβ/dim Bα = 2, and

Bα < Bβ < Bγ < Bδ

as Lie triple subsystem’s series of the Lie triple system g−1 ⊕ g1 of 5-graded
Lie algebra g = L(A) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 associated the normal triality
algebra A = g−1 and Der (g−1 ⊕ g1) ∼= g−2 ⊕ g0 ⊕ g2.

From § 6.2 (I) type, we obtain bisymmetric space’s series of type (I). It is
said to be a type (I) bisymmetric space.

(♥) F4/B4 < E6/(D5 ⊕ gl(1)) < E7/(D6 ⊕A1) < E8/D8
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and the dimensin of bisymmetric spaces of type (I);

16, 32, 64, 128 respectively.

With respect to Extended Dynkin diagrams (symmetric spaces) of E7, E6, F4;
◦− ◦ − ◦ − ◦ − ◦ − ◦ −}, ◦ omitted ∼= D6 ⊕A1, and } is highest root.

|
◦

◦ − ◦ − ◦ − ◦ − ◦ , ◦ omitted ∼= D5 ⊕ gl(1), and } is highest root.
|
◦
|
}

} − ◦ −◦ => ◦− ◦ , ◦ omitted ∼= B4, and } is highest root.

From § 6.2 (II) type, we may define the same concept to type (I) as follows.

(II) (dim Bδ + 16)/dim Bγ = (dim Bγ + 16)/dim Bβ =

(dim Bβ + 16)/dim Bα = 2, and Bα < Bβ < Bγ < Bδ

It is said to be a type(II) bisymmetric space.

(♥♥) F4/(C3 ⊕A1) < E6/(A5 ⊕A1) < E7/(D6 ⊕A1) < E8/(E7 ⊕A1)

and the dimension of bisymmetric spaces of type (II);

28, 40, 64, 112 respectively.

With respect to Extended Dynkin diagrams (symmetric spaces) type (II) of
E7, E6, F4;
◦−◦− ◦ − ◦ − ◦ − ◦ −}, ◦ omitted ∼= D6 ⊕A1, and } is highest root.

|
◦

◦ − ◦ − ◦ − ◦ − ◦, ◦ omitted ∼= A5 ⊕A1, and } is highest root.
|
◦
|
}

} − ◦ −◦ => ◦− ◦, ◦ omitted ∼= C3 ⊕A1. and } is highest root.

Here A1, A5, B4, C3, D5, D6 mean classical simple Lie algebras.
Remark. For type (II), we consider with L(A)/g0 vector spaces series;

F4/(C3 ⊕ gl(1)) < E6/(A5 ⊕ gl(1)) < E7/(D6 ⊕ gl(1)) < E8/(E7 ⊕ gl(1))

(dim Bδ+18)/dim Bγ = (dim Bγ +18)/dim Bβ = (dim Bβ+18)/dim Bα = 2,
and Bα < Bβ < Bγ < Bδ.
This bivector spaces series have dimensions 30, 42, 66, 114 respectively, (may
be, it seems that there is a certain algebraic structure, perhaps, to be said a
bireductive homogeneous space).

The content of this section is a new idea and the details will be described a
forthcoming paper in future.
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Concluding Remark. One of fundamntal our philosophy is to study the
construction of 5-graded Lie (super)algebras g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,
satisfying [gi, gj ] ⊆ gi+jwithout using roots systems and Cartan matrix.

In the end of this paper, for the references of this subject (nonassociative
algebras) recently, we note that it is useful to refer a Springer publisher book
(Math. and Statistics series, vol. 427) with respect to the Proceeding of con-
ferences of Nonassociative algebras and its applications in Coimbra University
(2022, Portgal).
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1. GENERALITIES AND STATEMENT OF RESULTS

We begin by establishing a notational convention: The symbol Σ′ will denote a summa-

tion over odd values of the index.

First we recall the formulas for the odd Legendre polynomials. (See [1, 22.3.8], which

gives the formulas for all the Legendre polynomials, odd or even.)

Theorem 1.1. For a nonnegative integer n, the Legendre polynomial P2n+1(x) is the poly-

nomial of degree 2n+1

P2n+1(x) =
2n+1

∑
i=1

′ a2n+1,ix
i

where

a2n+1,i = (1/22n+1)(−1)(2n+1−i)/2

(

2n+1+ i

2n+1

)(

2n+1
2n+1−i

2

)

It is convenient to have an alternative expression for the coefficients.

Lemma 1.2.

a2n+1,i = (1/22n+1)(−1)(2n+1−i)/2 (2n+1+ i)!
2n+1+i

2
! 2n+1−i

2
!i!

Proof. Routine computation. �

Now we establish some properties of the reverse Legendre polynomials.

Theorem 1.3. Let m, n and k be nonnegative integers with k ≤ n.

(a) The reverse Legendre polynomial
←
Pn

k(x) is a polynomial of degree at most n whose

low-order term is a nonzero multiple of xk.

(b)
←
Pn

k(x) is an even polynomial if k is even and an odd polynomial if k is odd.

(c)
←
P2m+k+1

k (x) =
←
P2m+k

k (x).

(d)
←
P2m+k

k (x) is a polynomial of degree 2m+k, with a zero of order k at x= 0 and 2m simple

zeroes at nonzero values of x, all of them real numbers symmetrically located around the

origin and lying in the open interval (−1,1).

(e)
←
Pn

k(x) is a polynomial of degree n if n− k is even and of degree n−1 if n− k is odd.

(f) The reverse Legendre polynomial
←
Pn

k(x) is uniquely determined by condition (a) above

and by the conditions that 〈
←
Pn

j(x),
←
Pn

k(x)〉= 0 for j > k and that
←
Pn

k(1) = 1.

Proof. (a) Let us begin by recalling the Gram-Schmidt procedure in general. Let V be

a vector space of finite or countably infinite dimension, and let B = {v1,v2, . . .} be an

ordered basis of V . The Gram-Schmidt procedure recursively produces an orthogonal (rep.

orthonormal) basis C = {w1,w2, . . .} (resp. C̃ = {w̃1, w̃2, . . .}) of V as follows: w1 = v1

and, assuming that w j is defined for 1≤ j ≤ k−1, wk = vk−∑k−1
j=1(〈vk,w j〉)/(〈w j,w j〉)w j

(and w̃k = (1/〈wk,wk〉)wk). In particular, wk = vk + a linear combination of v1, . . . ,vk−1

and consequently Span({w1, . . . ,wk}) = Span({v1, . . . ,vk}) for every k ≥ 1.

Applying that procedure to the ordered basis B = {xn,xn−1, . . . ,1} of Pn we see that
←
Pn

k(x) is as claimed.

(b) This follows immediately from the fact that if f (x) is any even function and g(x) is

any odd function, 〈 f (x),g(x)〉= 0.

.
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(c)
←
P2m+k+1

k (x) is obtained from {x2m+k+1, . . . ,xk} via the Gram-Schmidt procedure,

and
←
P2m

k (x) is obtained from {x2m+k, . . . ,xk} via the Gram-Schmidt procedure. Comparing

the two applications of this procedure, we see the results are exactly the same, by the proof

of (b).

(d) By (a) and (b), we have that
←
P2m+k

k (x) = xk f (x) for some even polynomial f (x) of

degree at most 2m with nonzero constant term. Thus the zeroes of f (x) all occur at nonzero

values of x, symmetrically located with respect to the origin. Let f (x) have t zeroes of odd

order r1, . . . ,rt in the interval (−1,1). We have that t ≤ 2m, so if we show that t = 2m we

will have established that these are all the zeroes of f (x), that they are all simple, and that
←
P2m+k

k (x) has degree 2m+ k. We argue by contradiction. Suppose t < 2m. Since t is even,

t ≤ 2m−2. Let g(x) = (x− r1) · · ·(x− rt) and h(x) = xk+2g(x). Then on the one hand

〈
←
P2m+k

k (x),h(x)〉=

∫ 1

−1
(xk f (x))(xk+2g(x))dx =

∫ 1

−1
x2k+2 f (x)g(x)dx 6= 0,

as x2k+2 f (x)g(x) has constant sign in [−1,1] and is not identically zero. But on the other

hand, h(x) is a polynomial of degree at most (k+ 2)+ (2m− 2) = 2m+ k with low-order

term of degree k+2, so
←
P2m+k

k (x) is orthogonal to h(x), i.e., 〈
←
P2m+k

k (x),h(x)〉= 0; contra-

diction.

(e) Suppose n− k is even. Set n− k = 2m. Then, by (d),
←
Pn

k(x) has degree 2m+ k = n.

The case n− k odd then follows immediately from (c).

(f) The polynomial
←
Pn

k(x) is a polynomial in V , the vector space spanned by {xn, . . . ,xk},

that is orthogonal to W , the subspace of V spanned by {xn, . . . ,xk+1}. The orthogonal

complement U of W in V is 1-dimensional, so U = {c f (x)} where f (x) is any nonzero

polynomial in U and c is an arbitrary constant. Then if g(1) 6= 0 for some, and hence

every, nonzero element g(x) of U , g(x) will be specified by the value of g(1). But that is

the case by (d). �

There are some cases in which we can readily determine
←
Pn

k(x).

Theorem 1.4.

(a)
←
Pn

n(x) = xn for all n≥ 0.

(b)
←
Pn

n−1(x) = xn−1 for all n≥ 1.

(c)
←
Pn

n−2(x) =
2n−1

2
xn− 2n−3

2
xn−2 for all n≥ 2.

(d)
←
P2m+1

0 (x) =
←
P2m

0 (x) = P2m+1(x)/x for all m≥ 0.

Proof. (a) is immediate, (b) immediately follows from 〈xn,xn−1〉= 0, and (c) is a routine

computation with the Gram-Schmidt procedure.

As for (d), let n = 2m or 2m+ 1. We first note that P2m+1(x) is an odd polynomial

of degree 2m+ 1 with nonzero x term, so the quotient P2m+1(x)/x is an even polynomial

of degree 2m ≤ n with a nonzero constant term. We show that P2m+1(x)/x satisfies the

conditions of Theorem 1.3(f) and hence that
←
P2m

0 (x) = P2m+1(x)/x. By Theorem 1.3(a),

we have that, for any j between 1 and n,
←
Pn

j(x) is a polynomial of degree at most n that is

divisible by x j, so in particular, for any such j,
←
Pn

j(x)/x is a polynomial of degree at most

.
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n−1≤ 2m. But then

〈
←
Pn

j(x),P2m+1(x)/x〉=

∫ 1

−1

←
Pn

j(x)(P2m+1(x)/x)dx

=
∫ 1

−1
(
←
Pn

j(x)/x)P2m+1(x)dx = 〈
←
Pn

j(x)/x,P2m+1(x)〉= 0,

as P2m+1(x) is orthogonal to every polynomial of degree at most 2m.

Also, the value of the polynomial P2m+1(x)/x at x = 1 is P2m+1(1)/1 = 1/1 = 1. �

We now explicitly determine
←
Pn

k(x) in general.

Theorem 1.5. Let m and k be nonnegative integers. Then

←
P2m+k+1

k (x) =
←
P2m+k

k (x) =
2m+1

∑
i=1

′ wm,k,ia2m+1,ix
k+i−1

where

wm,k,i =
k−1

∏
s=0

i+2s+2m+2

i+2s+2

Equivalently, let n be a nonnegative integer and let k be a nonnegative integer with k ≤ n.

Then

←
Pn

k(x) =
n−k+1

∑
i=1

′ w(n−k)/2,k,ian−k+1,ix
k+i−1 for n− k even,

←
Pn

k(x) =
n−k

∑
i=1

′ w(n−k−1)/2,k,ian−k,ix
k+i−1 for n− k odd.

Proof. In light of Theorem 1.3(f), it suffices to show that {
←
Pn

k(x)}k=0,...,n, as given by

these formulas, are pairwise mutually orthogonal and that
←
Pn

k(1) = 1 for k = 0, . . . ,n. We

show these properties in Sections 2 and 3 below. �

It is convenient to have the following alternate expressions for wm,k,i. Here for an odd

positive integer ℓ, we set ℓ!! = (1)(3) · · ·(ℓ), the product of the odd integers from 1 to ℓ.

Lemma 1.6.

wm,k,i =
i!!(i+2k+2m)!!

(i+2k)!!(i+2m)!!

=

(

i+2k+2m
2k

)((i−1)/2+k
k

)

(

i+2k
2k

)((i−1)/2+k+m
k

)

Proof. Routine computation. �

We also have an alternate expression for the coefficients of the reverse Legendre poly-

nomials.

Lemma 1.7.

wm,k,ia2m+1,i = (1/22m+1)(−1)(2m+1−i)/2






2

(

i+2k+2m
2m

)(

2m
m

)(

m
(i−1)/2

)

((i−1)/2+k+m
m

)







.
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Proof. Routine computation. �

From Theorem 1.1 and Lemma 1.6 we see that 22m+1wm,k,ia2m+1,i is a rational number

with odd denominator. On the basis of extensive computations (see the tables in section 4)

we make the following conjecture:

Conjecture 1.8. The parenthesized expression in Lemma 1.7 is always an integer.

Remark 1.9. While we have stated Theorems 1.4 and 1.5 in general, in light of Theorem

1.3(c) we will henceforth (almost always) restrict our attention to
←
Pn

k(x) for n− k even.

2. ORTHOGONALITY

The key to proving orthogonality is to establish the following recursion.

Lemma 2.1. Let {
←
Pn

k(x)} be as given in Theorem 1.5.

(a) For any m≥ 1, and 0≤ j ≤ m

〈x j+2,
←
P

j+2m
j (x)〉= 〈x j+2m+1,

←
P

j+2m+1
j+1 (x)〉.

(b) For any m≥ 1, 0≤ j ≤ m, and 1≤ t ≤ m−1

(2m−2t)
(

〈x j+2,
←
P

j+2m
j (x)〉−〈x j+2t+2,

←
P

j+2m
j (x)〉

)

=

(2t)
(

〈x j+2t+1,
←
P

j+2m+1
j+1 (x)〉−〈x j+2m+1,

←
P

j+2m+1
j+1 (x)〉

)

.

Proof. For simplicity let us write

←
P

j+2m
j (x) =

2m+1

∑
i=1

′ bix
(i−1)+ j,

←
P

j+2m+1
j+1 (x) =

2m+1

∑
i=1

′ cix
i+ j.

Then, from the expressions for wm, j,i and wm, j+1,i in Theorem 1.5, we see that

ci =
(i+2)+2 j+2m

(i+2)+2 j
bi.

(a) We directly compute

〈x j+2,
←
P

j+2m
j (x)〉= 2

2m+1

∑
i=1

′ bi

(i+2)+2 j
,

〈x j+2m+1,
←
P

j+2m+1
j+1 (x)〉= 2

2m+1

∑
i=1

′ ci

(i+2)+2 j+2m
,

and these are equal.

.
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(b) Again we directly compute

(2m−2t)
(

〈x j+2,
←
P

2m+ j
j (x)〉−〈x j+2t+2,

←
P

2m+ j
j (x)〉

)

= 2
2m+1

∑
i=1

′ (2m−2t)(2t)

(i+2+2 j)(i+2+2 j+2t)
bi,

(2t)
(

〈x j+2t+1,
←
P

2m+ j+1
j+1 (x)〉−〈x j+2m+1,

←
P

2m+ j+1
j+1 (x)〉

)

= 2
2m+1

∑
i=1

′ (2t)(2m−2t)

(i+2+2 j+2t)(i+2+2 j+2m)
ci,

and these are equal. �

Theorem 2.2. Let {
←
Pn

k(x)} be as given in Theorem 1.5. Then {
←
Pn

k(x)}k=0,...,n are pairwise

mutually orthogonal.

Proof. We proceed by induction on n. The theorem is trivially true if n = 0.

Fix n. Then we must show that, for every k with 0≤ n−1,
←
Pn

k(x) is orthogonal to
←
Pn

j(x)
for every j with k+1≤ j ≤ n. We have shown this for k = 0 in Theorem 1.4 (noting that

for k = 0 the expression in Theorem 1.5 agrees with that in Theorem 1.4). Thus we may

assume k ≥ 1.

We recall that
←
Pn

k(x) is even if k is even and odd if k is odd, and that every power of x

appearing in
←
Pn

k(x) is between k and n. Thus it suffices to show that
←
Pn

k(x) is orthogonal to

xk+2t for any t with 1 ≤ t ≤ u where u = (n− k)/2 for n− k even, and u = (n− k− 1)/2

for n− k odd.

Setting j = k−1 and n = j+2m+1 in Lemma 2.1(a), we obtain

〈xk+1,
←
Pn−1

k−1(x)〉= 〈x
n,
←
Pn

k(x)〉 for any 1≤ k ≤ n−1.

By the inductive hypothesis, the left hand side is 0, so 〈xn,
←
Pn

k(x)〉= 0.

Then, with the same substitutions, from Lemma 2.1(b), the inductive hypothesis, and

our conclusion that 〈xn,
←
Pn

k(x)〉= 0, we obtain

0 = (2t)〈xk+2t ,
←
Pn

k(x)〉 for any 1≤ k ≤ n−1, 1≤ t ≤ u,

so 〈xk+2t ,
←
Pn

k(x)〉= 0, and by induction we are done. �

3. NORMALIZATION

The Legendre polynomials satisfy a three-term recurrence relation ([1, 22.1.4, 22.1.5,

and 22.3.8]). We begin by deriving a three-term recurrence relation for the reverse Le-

gendre polynomials, a result interesting in its own right.

Theorem 3.1. Let {
←
Pn

k(x)} be as given in Theorem 1.5. For any n≥ 2 and for any integer

k with 0≤ k ≤ n−2 and n− k even,

←
Pn

k(x) = (−1)
n+ k+1

n− k

←
Pn−2

k (x)+
2n+1

n− k
x
←
Pn−1

k+1(x).

.
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Proof. We look for a recursion of the form

←
Pn

k(x) = α
←
Pn−2

k (x)+βx
←
Pn−1

k+1(x).

We note that the low-order terms of
←
Pn

k(x) and
←
Pn−2

k (x) are of degree k while the low-order

term of x
←
Pn−1

k+1(x) is of degree k+ 2, and the high-order terms of
←
Pn

k(x) and x
←
Pn−1

k+1(x) are

of degree n while the high-order term of
←
Pn−2

k (x) is of degree n−2. Hence if there is such

a recursion we must have

α =
trailing coefficient of

←
Pn

k(x)

trailing coefficient of
←
Pn−2

k (x)
,

β =
leading coefficient of

←
Pn

k(x)

leading coefficient of
←
Pn−1

k+1(x)
.

Referring to Theorem 1.5, we see that these ratios are

α =
w(n−k)/2,k,1

w(n−k−2)/2,k,1
·

an−k+1,1

an−k−1,1
,

β =
w(n−k)/2,k,n−k+1

w(n−k−2)/2,k+1,n−k−1

·
an−k+1,n−k+1

an−k−1,n−k−1

.

Substituting the expression in Lemma 1.2 and the first expression in Lemma 1.6, and

doing some elementary algebra, we find that

α =
n+ k+1

n− k+1
· (−1)

n− k+1

n− k
= (−1)

n+ k+1

n− k
,

β =
(n− k+1)(2n+1)

(2n−2k−1)(2n−2k+1)
·
(2n−2k−1)(2n−2k+1)

(n− k)(n− k+1)
=

2n+1

n− k
.

Now we must establish that this relation holds for the intermediate terms, i.e, that for

every i = 1, . . . ,(n− k−2/2) we have that

coefficient of x2i+k in
←
Pn

k(x) = α
(

coefficient of x2i+k in
←
Pn−2

k (x)
)

+β
(

coefficient of x2i+k−1 in
←
Pn−1

k+1(x)
)

for these values of α and β .

Substituting the first expression in Lemma 1.6 and doing some elementary algebra, we

find that this relation is equivalent to the following relation among coeficients of Legendre

polynomials:

(2i+1)(2i+n+ k+1)an−k+1,2i+1 = α(2i+1)(2i+n− k+1)an−k−1,2i+1

+β (2i+n− k−1)(2i+n− k+1)an−k−1,2i−1

for i = 1, . . . ,(n− k−2)/2. (If we adopt the convention that a2m+1, j = 0 if j > 2m+1 or

j < 0, then that will hold for i = 0, . . . ,(n− k)/2, by our determination of α and β .)

Substituting from Lemma 1.2 and doing some more elementary algebra, we find that

this relation is equivalent to

(n− k)(2i+n+ k+1) = (n− k−2i)(n+ k+1)+2i(2n+1),

which is trivial to verify. �

With this recursion in hand, it is very easy to prove normalization.

.
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Theorem 3.2. Let {
←
Pn

k(x)} be as given in Theorem 1.5. For any nonnegative integer n and

any k with 0≤ k ≤ n,
←
Pn

k(1) = 1.

Proof. It suffices to prove this for n− k even. Let n− k = 2m. We proceed by induction

on m. By Theorem 1.4(a),
←
Pn

n(1) = 1, so the theorem is true for m= 0. Assume the theorem

is true for m−1. By Theorem 3.1 and the inductive hypothesis,

←
Pn

k(1) = (−1)
n+ k+1

n− k

←
Pn−2

k (1)+
2n+1

n− k
(1)
←
Pn−1

k+1(1) = (−1)
n+ k+1

n− k
+

2n+1

n− k
= 1,

and so the theorem is true for m. Then, by induction, it is true in general. �

4. TABLE OF VALUES

We let Jn
k = 2 j(n−k) where j(0) = j(1) = 0, j(2) = j(3) = 1, j(4) = j(5) = 3, j(6) =

j(7) = 4, j(8) = j(9) = 7, j(10) = 8.

Table of Jn
k

←
Pn

k(x)



























6 x6

5 x5 x5

4 x4 x4 13x6−11x4

3 x3 x3 11x5−9x3 11x5−9x3

2 x2 x2 9x4−7x2 9x4−7x2 143x6−198x4 +63x2

1 x x 7x3−5x 7x3−5x 99x5−126x3 +35x 99x5−126x3 +35x

0 1 1 5x2−3 5x2−3 63x4−70x2 +15 63x4−70x2 +15 429x6−693x4 +315x2−35

0 1 2 3 4 5 6





























































8 x8

7 x7 x7

6 x6 17x8−15x6

5 15x7−13x5 15x7−13x5

4 13x6−11x4 255x8−390x6 +143x4

3 195x7−286x5 +99x3 195x7−286x5 +99x3

2 143x6−198x4 +63x2 1105x8−2145x6 +1287x4−231x2

1 715x7−1287x5 +693x3−105x 715x7−1287x5 +693x3−105x

0 429x6−693x4 +315x2−35 12155x8−25740x6 +18018x4−4620x2 +315

7 8













































































10 x10

9 x9 x9

8 x8 21x10−19x8

7 19x9−17x7 19x9−17x7

6 17x8−15x6 399x10−646x8 +255x6

5 323x9−510x7 +195x5 323x9−510x7 +195x5

4 255x8−390x6 +143x4 2261x10−4845x8 +3315x6−715x4

3 1615x9−3315x7 +2145x5−429x3 1615x9−3315x7 +2145x5−429x3

2 1105x8−2145x6 +1287x4−231x2 33915x10−83980x8 +72930x6−25740x4 +3003x2

1 20995x9−48620x7 +38610x5−12012x3 +1155x 20995x9−48620x7 +38610x5−12012x3 +1155x

0 12155x8−25740x6 +18018x4−4620x2 +315 88179x10−230945x8 +218790x6−90090x4 +15015x2−693

9 10











































.
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5. APPLICATION TO QUADRATURE

As is well known, there is an application of Legendre polynomials to quadrature. Let

P2k−1 be the vector space of polynomials of degree at most 2k− 1, so that P2k−1 has di-

mension 2k. Then for any polynomial f (x) in P2k−1, there is a formula for
∫ 1
−1 f (x)dx in

terms of the values of f (x) at the k zeroes of the Legendre polynomial Pk(x). We derive a

similar application for the reverse Legendre polynomials.

Let k and m be fixed but arbitrary. Let V be the vector space of all polynomials of de-

gree at most 4m+2k that are divisible by x2k+1, so that V has dimension 4m. We derive a

formula, valid for any polynomial f (x) in V , for
∫ 1
−1 f (x)dx in terms of the values of f (x)

at the 2m zeroes of
←
P2m+k

k (x) other than x = 0.

We denote the zeroes of
←
P2m+k

k (x) other than x = 0 by r−m < .. . < r−1 < r1 < .. . < rm,

where r−i =−ri for each i. (Recall Theorem 1.3(d).) We define functions qi(x) by

qi(x) = x2k+2 ∏
j 6=i

(x− r j)
2

and observe that qi(x) is a polynomial of degree 4m+2k in V . We define constants ci by

ci = (1/qi(ri))
∫ 1

−1
qi(x)dx

and observe that ci > 0 and that c−i = ci, for each i.

Theorem 5.1. For any polynomial f (x) in V ,

∫ 1

−1
f (x)dx = ∑

i

ci f (ri).

Proof. Let W be the subspace of V consisting of all polynomials of degree at most

4m+2k that are divisible by x2k+2m+1. Then W is a vector space of dimension 2m. V has

basis

B = {xk+1
←
P2m+k

k (x), . . . ,xk+2m
←
P2m+k

k (x),x2k+2m+1, . . . ,x2k+4m}

(as
←
P2m+k

k (x) is divisible by xk but not xk+1) and the last 2m vectors in this basis form a

basis C of W .

Let V ∗ and W ∗ be the duals of V and W . For a polynomial f (x) in V (resp. W ), let

I( f ) =
∫ 1
−1 f (x)dx, so that I ∈ V ∗ (resp. W ∗). Also, for a point r in [-1,1], let er( f (x)) =

f (r), so that er ∈V ∗ (resp. W ∗). Then, as the points {r−m, . . . ,rm} are nonzero and distinct,

{er−m , . . . ,erm} is linearly independent and hence a basis of W ∗, so we have that

I = ∑
i

γieri
,

i.e.,
∫ 1

−1
f (x)dx = ∑

i

γi f (ri)

for every polynomial f (x) in W , for unique constants {γ−m, . . . ,γm}. We claim that this

equation holds for every polynomial f (x) in V . To verify that, it suffices to show that it

.
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holds on each of the basis elements xt
←
P2m+k

k (x), t = k+ 1, . . . ,k+ 2m. But the left hand

side of this equation is
∫ 1

−1
xt
←
P2m+k

k (x) = 〈xt ,
←
P2m+k

k (x)〉= 0

as
←
P2m+k

k (x) is orthogonal to any such polynomial xt , while the right hand side of this

equation is

∑
i

γi(ri)
t
←
P2m+k

k (ri) = 0

precisely because the ri are the roots of
←
P2m+k

k (x).

It remains to identify the constants γi. To this end, consider the set of functions

D = {q−m(x), . . . ,qm(x)}.

For each function in this set we have
∫ 1

−1
qi(x)dx = ∑

j

γ jqi(r j) = γiqi(ri)

as qi(r j) = 0 for j 6= i, yielding γi = ci as above. �
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Let G be the set of ideals P of R such that not every S(R/P)-injective right R/P-module is 
injective. Then G is non-empty since 0 .G∈  Because R is right Noetherian, we may choose 
maximal element P in G. Further, without loss of generality, we may assume that 0.P =  

Let X be a right R-module which is S(R) injective but not injective. Then there exists (by Baer 
criterion) a right ideal E of R, and an R-map : E Xφ → such that φ cannot be lifted to R.  

Because R is right Noetherian, we may choose E to be maximal with respect to the property 
contained in RE. 

If 2 0,E ≠  we will reach a contradiction.  

If 2 0,E = then we let E be the right ideal containing E and maximal with respect to properly 

contained in RE. Suppose that 2 0.E =  Then /RE E  is a simple R-module.  If for any ,r R∈  

,REr E∈  then ( ) ( ) ,RE RrR E⊆ and since the set of ideals of a fully prime ring is linearly 

ordered, and every ideal is idempotent, either ( ) ( )( ) ,RE RrR RE= or ( ) ( ) .RE RrR RrR=  As

,E RE⊂  we have ,RrR E⊂  and as 0,RrR E⊆ =  /RE E  is faithful and this implies R is 
primitive. Thus, we now assume 2 0,E ≠  and this will get a conclusion that R is either primitive 
or every S(R)-injective right R-module is injective. 

Suppose that S(R)-injective right R-module is injective. In this case we see that R is a simple ring 

and hence primitive: Suppose that R is not simple. Consider R/M where M is the nonzero 

maximal ideal of R. Since every ideal of R is idempotent and the set of ideals is linearly ordered, 

for any ideal P, if : /P R Mφ → is a R-map, ( ) ( ) 0,P P Pφ φ= = and hence R/M is S(R)-injective 

and therefore it is injective. On the other hand, since R is prime Noetherian, M contains a regular 

element a.  Since R/M is injective, the lifting property of the map : /aR R Mφ →  by 

( )ar r Mφ = + implies ( ) 1 (1) ,a M a Mφ φ= + = = a contradiction. 

 

By Theorem 3.4 of Blair-Tsutsui [1], a right Noetherian fully right bounded ring is simple 

Artinian. We now have the following: 

Corollary 1: Let R be a right Noetherian fully prime ring. Then the following is equivalent: 

(a) R is right bounded. 
(b) R is fully right bounded. 
(c) R is simple Artinian. 

 

.



.

89

Corollary 2: Let R be a right Noetherian fully prime ring with an ideal P. Then R/P is right 

bounded if and only if R/P is simple Artinian.  

 

Example 1: Theorem 2 of Hirano [4] gives a fully (completely) prime ring (domain) with n 

ideals. For a field of k of characteristic 0, if we let 1( ),D A k= the Weyl algebra with char, then 

1R  is a fully prime Noetherian domain with exactly one non-zero proper ideal 1( )xA k as shown in 

Theorem 4.6 of Blair-Tsutsui [1].  Since nR is the idealizer of ( ) ( ),n
k nT D A k≅  and ( )nA k is a 

simple right Noetherian domain, nR is a fully prime right Noetherian ring with exactly n nonzero 

ideals. 

We remark that while the ring nR in Example 1 is a domain, a fully prime right Noetherian ring is 

not necessarily a domain as a simple Noetherian ring that is not a domain exists (See Example 

14.17 of Chatters-Hajarnavis [2]).  Note also that a prime right Noetherian ring is simple 

Artinian if Soc(R) 0≠  (See Theorem 1.24 of Chatters-Hajarnavis [2]). Thus Soc(R) of the ring 

nR in Example 1 is zero, or more generally, a non-simple fully prime right Noetherian ring R is a 

nonsingular primitive ring with Soc(R) 0= .  

Proposition.  A fully prime ring R is either a nonsingular primitive ring with Soc(R) being the 

minimum nonzero (two sided) ideal, or a ring with Soc(R) 0.=  

Proof: If Soc(R) 0,≠ then, since R is prime, R is primitive. Further, since Soc(R) is the 

intersection of all essential right ideals; all ideals in a prime ring is essential; and every ideal of a 

fully prime ring is linearly ordered; we have 
0

0 Soc( ) .
i

i
P R

R P
≠

≠ ⊆


  Thus, Soc(R) is the minimum 

nonzero ideal of R.  As Sing( ) Soc( ) 0,R R⋅ =  Sing( ) 0.R =    

Note that since a fully prime right Noetherian ring is in particular a strongly prime ring, it is 

nonsingular by Proposition II.1 of Handelman-Lawrence [3].  

.
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Example 2.  A ring R that is not nonsingular is given in (11.21) Example of Lam [6]. R has 

exactly one nonzero proper ideal and the ideal is idempotent. Hence R is a fully prime ring that 

is not nonsingular. 

The next example shows that exists a non-primitive fully prime ring (with identity) that has 

infinitely many ideals and the intersection of nonzero ideals is nonzero.  

Example 3. 

Mazurek-Roszkowska [5] constructed an example of a chain ring S without identity: S is a 

domain whose lattice of left ideals as well as the lattice of right ideals are linearly ordered such 

that 

(1) S is a F algebra and every ideal of S is a F ideal, 

(2) ( ) ,J S S=  

(3) /S I S≈  for each ideal I of S (hence I is a completely prime ideal), and  

(4) S has countably many ideals 0 10 .nI I I I Sω= ⊂ ⊂ ⊂ ⊂ =   

We merely embed S into a ring R with identity as the standard way: 

Let R S F= ⊕  where addition is defined component wise and multiplication is given by 

1 1 2 2 1 2 1 2 2 1 1 2( , )( , ) ( , )s k s k s s k s k s s s= + + where 1 2 1 2, ,  , .s s S k k F∈ ∈  

Let 0.M S= ⊕  Then as / ,R M F≈ M is a maximal right ideal. Hence ( ) ( ).J R M J R= ∩  But 

then, since ( ) ,J S S= ( ) ( ) ( ).J M M M J R J R= = ∩ =  As 0,M ≠  R is not semiprimitive. As 

( ),M J R=  M is a unique maximal right ideal of R, and hence every right ideal of R is contained 

in .M  If 0T M⊕ ⊆ is an ideal of R, then, T is an ideal of .S  On the other hand, for any for any 

ideal I of S, let ( ,0) 0.i I∈ ⊕  then ( ,0)( , ) ( ,0),  ( , )( ,0) ( ,0)i s k is ki s k i si ki= + = + for any 

( , ) .s k R∈  As I is an F algebra, this shows that only (two sided) ideals of R are of the form 0I ⊕

for ideal I of S.  
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