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An element e of a ring R is called an idempotent if e = e. An idempotent e is

said to be primitive if there are no two non-zero idempotent f, g € R such that

e=f+gand fg=gf =0.

Proposition 1. Let K be a field of charactristic p # 2. Let R be a K -subalgebra of
the ring M,,(K) of n xn matrices over K containing matriz units e11, €22, , €nn-
Let M denote the set consisting of primitive idempotents and 0. Suppose that, for
any e, f € M, ef is either an idempotent or a nilpotent element. Then R is
isomorphic to a K-subalgebra of the ring T,,(K) of all upper triangular matrices

over K.

Proof. Assume that e;;,e;; € R for some ¢ # j. Then R contain two primitive
idempotents e = e;; +e;; and f = e;;+¢€;;. We see that ef = 2e;;. Since char(K) #
2, 2e;; is neither an idempotent nor a nilpotent element. Hence, if e;; € R for some
i # j, then e;;  R. Now we define an order on the set {1,2,--- ,n}. If ¢;; € R,
then we define ¢ < j. Since e;; € R for all i € {1,2,--- ,n}, we have i < 4. If
i < jand j <k, then e;;, ejr € R, and hence e;;, = e;je;; € R. Therefore i < k.
If ¢ < jandj <4, then e, ej; € R. As we saw in the first paragraph of the
proof, ¢ = j in this case. Therefore < is a partial order on {1,2, --- ,n}. Let
m be a minimal element of the ordered set {1,2, --- ,n}. Then e,,; ¢ R for any
j # m. Renumbering the elements in {1,2, --- ,n}, we may assume that m = 1.
Then we see R C e11 K + (eaa + -+ + epn)R(e22 + - -+ + epp). Using induction on
n, (eaa + - + €nn)R(e22 + - - + €,y) is isomorphic to a K-subalgebra of the ring
T,,—1(K). Hence R is isomorphic to a K-subalgebra of T, (K).

Modified version of this article has been submitted elsewhere for publication.
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The following example show that the proposition above is not true when the
field K is of characteristic 2.

Example 1. Consider the ring R = My(GF(2)) of 2 X 2 matrices over the Galois
field GF(2) and let M denote the set consisting of all primitive idempotents in R
and zero. We can easily see that for any e, f € M, ef is either an idempotent or

a nilpotent element.
Next, we prove the following.

Proposition 2. Let e be a primitive idempotent of a ring R. If ef is a non-zero

idempotent of R for some element f € R, then ef is a primitive idempotent.

Proof. Assume that ef = a + b for some orthogonal idempotents a, b € R.
Then a +b = ef = ea + eb, and so a = (a + b)a = (ea + eb)a = ea. Similarly,
we have b = eb. We can easily see that e — ae and ae are orthogonal idempotents
and e = (e — ae) 4+ ae. Since e is a primitive idempotent, either e = ae or ae = 0
holds. If e = ae, then b = eb = aeb = ab = 0. On the other hand, if e = ae, then
a = a®? = aea = 0. This proves that ef is primitive.

Let R be a ring. Let M and E denote the set consisting of all primitive idem-
potents in R and zero and the set of idempotents in R, respectively. If S is a
multiplicatively closed set of idempotents in R containing 0, then M N S is also

multiplicatively closed.

By Zorn’s lemma, we have the following.

Proposition 3. FEvery multiplicatively closed subset of M (resp. E) is contained

in a mazimal multiplicatively closed subset of M (resp. E).

Example 2. Let M3(K) be a ring of 2 X 2 matrices over a field K. We can see
that (e11 + e12K) U {0} is a mazimal multiplicatively closed subset of M.

Theorem 1. Let R be a ring and let M denote the set consisting of all primitive
idempotents in R and zero. Suppose that there are primitive orthogonal idempotents
e1,e2, - ,en Of R such that 1 = e; +ex+ -+ +e,. Then {0,e1,ea, -+ ,e,} s a

mazximal multiplicatively cosed set in M.

Proof. Suppose, on the contrary, that there is a multiplicativery colsed subset G
of M which properly contains {0, e, ez, - ,e,} and let f € G\ {0,e1,e2,--- ,en}.
Since e fes is a nilpotent element, e; fea must be 0. Similarly we have ey fe; = 0 for
i=3,...,n. Hence we have ey f(1—e;) = ey fea+---+e1 fe, = 0. Similarly we have

(1 —e1)fer = 0. Therefore e; f = e fe; = feq, that is e; and f are commutative.



MULTIPLICATIVE SETS OF IDEMPOTENTS IN A SEMILOCAL RING 3

By the same way, we can see that f and e; are commutative for i = 2,---  n.
Now we can easily see that e; f,esf, -+ , e, f are primitive orthogonal idempotents.
Since 1 =e1f + -+ +, f and since f is primitive, we conclude that f = e;f for q.
Since f and e; are commutative, e; f and e;(1 — f) are orthogonal idempotents.
Since e; = e1f + e1(1 — f) and since f is primitive, we see e;(1 — f) = 0. Then

e1 = e1f = f, a contradiction.

Example 3. Consider the ring R = Z + M>(Q[z]x). R is an order of M2 (Qz]).
We can easily see that the idempotents of R are only 0 and 1.

Theorem 2. Let R be a ring and let M denote the set consisting of all primitive
idempotents in R and zero. Suppose that 1 is a sum of primitive orthogonal idem-
potents. Then M is closed under multiplication if and only if R is a direct sum of

rings with no non-trivial idempotents.

Proof. Suppose that M is closed under multiplication and that there are prim-

itive orthogonal idempotents ey, es, -+ ,e, of R such that 1 = e; + ey + -+ + e,.
Since {0, e1,€2, - ,e,} is a maximal multiplicatively cosed set in M by Theorem
1, we conclude that M = {0,e1,e2,--- ,e,}. Then ey, es, - , e, are central orthog-

onal idempotents and R = e;R & --- ® e, R. Since each e; is primitive, each e; R
has no non-trivial idempotents.

In [2], D. Dolzan proved that M is closed under multiplication if and only if R
is a direct sum of local rings([2, Corollary 5.6]). Now we generalize this result to
semiperfect rings. Let R denote a ring and J denote its Jacobson radical. A ring
R is called semiperfect if R is semilocal and idempotents of R/J can be lifted to
R. All basic results concerning rings can be found in [1].

If R be a semiperfect ring, then there are primitive orthogonal idempotents
e1,€es, -+ ,e, of R such that 1 =e; +e3+ -+ 4 e, and each e;Re; is a local ring.

Hence we have the following.

Corollary 1. Let R be a semiperfect ring and M be the set of all minimal idem-
potents and zero in R. Then the set M is closed under multiplication if and only if

R is a direct sum of local rings.

Let [M] denote the set {eR | e € M}, that is, [M] is the set of right ideals of the

form eR for some primitive idempotent e and the ideal 0.

Theorem 3. Let R be a semiperfect ring and [M] be the set of right ideals of the
form eR for some primitive idempotent e and the ideal 0. Then the set [M] is
closed under multiplication if and only if R is a finite direct sum of matriz rings

over some local Ting.
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Proof. If R is a finite direct sum of matrix ring over some local ring, then
clearly M is closed under multiplication. Let e and f be two primitive idempotents
of R. Then either eRfR =0 or eRfR = gR for some primitive idempotent g € R.
If eRfR = 0, then (fReR)?> = 0. In this case fReR is not a nonzero direct
summand of R, and so we conclude that fReR = 0. If eRfR = gR for some
primitive idempotent g € R, then eR O gR. Using modular law, we have eR =
eRN(gR® (1 —g)R) = gR@®eRN (1 — g)R. Since eR is indecomposable, we
conclude that gR = eR. Thus eRfR = eR, and so eRfRe = eRe. Then we
can write e = 2?21 ea; fbje for some a;, b; € R. Since eRe is a local ring, for
some k, eay fbre is invertible in eRe. Similarly there exists ¢, d € R such that
feedf is invertible in fRf. These mean that eR = fR. Since R is semiperfect,
R=e1R®---Pe,R for some primitive idempotents eq, - - - , e,. By the fact proved
above, R= R;®---® R,, such that each two-sided ideal R; is a finite direct sum of
isomorphic indecomposable modeles. Then R 2 End(R;) @ - - - ® End(R,,). Thus

each R; & End(R;) is a matrix ring ove a local ring.
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