MULTIPLICATIVE SETS OF IDEMPOTENTS IN A SEMILOCAL RING

YASUYUKI HIRANO
Department of Mathematics, Naruto University of Education, Naruto 772-8502, Japan

An element e of a ring R is called an idempotent if $e^{2}=e$. An idempotent e is said to be primitive if there are no two non-zero idempotent $f, g \in R$ such that $e=f+g$ and $f g=g f=0$.

Proposition 1. Let K be a field of charactristic $p \neq 2$. Let R be a K-subalgebra of the ring $M_{n}(K)$ of $n \times n$ matrices over K containing matrix units $e_{11}, e_{22}, \cdots, e_{n n}$. Let M denote the set consisting of primitive idempotents and 0 . Suppose that, for any $e, f \in M$, ef is either an idempotent or a nilpotent element. Then R is isomorphic to a K-subalgebra of the ring $T_{n}(K)$ of all upper triangular matrices over K.

Proof. Assume that $e_{i j}, e_{j i} \in R$ for some $i \neq j$. Then R contain two primitive idempotents $e=e_{i i}+e_{i j}$ and $f=e_{i i}+e_{j i}$. We see that $e f=2 e_{i i}$. Since $\operatorname{char}(K) \neq$ $2,2 e_{i i}$ is neither an idempotent nor a nilpotent element. Hence, if $e_{i j} \in R$ for some $i \neq j$, then $e_{j i} \notin R$. Now we define an order on the set $\{1,2, \cdots, n\}$. If $e_{i j} \in R$, then we define $i \leq j$. Since $e_{i i} \in R$ for all $i \in\{1,2, \cdots, n\}$, we have $i \leq i$. If $i \leq j$ and $j \leq k$, then $e_{i j}, e_{j k} \in R$, and hence $e_{i k}=e_{i j} e_{j k} \in R$. Therefore $i \leq k$. If $i \leq j$ and $j \leq i$, then $e_{i j}, e_{j i} \in R$. As we saw in the first paragraph of the proof, $i=j$ in this case. Therefore \leq is a partial order on $\{1,2, \cdots, n\}$. Let m be a minimal element of the ordered set $\{1,2, \cdots, n\}$. Then $e_{m j} \notin R$ for any $j \neq m$. Renumbering the elements in $\{1,2, \cdots, n\}$, we may assume that $m=1$. Then we see $R \subset e_{11} K+\left(e_{22}+\cdots+e_{n n}\right) R\left(e_{22}+\cdots+e_{n n}\right)$. Using induction on $n,\left(e_{22}+\cdots+e_{n n}\right) R\left(e_{22}+\cdots+e_{n n}\right)$ is isomorphic to a K-subalgebra of the ring $T_{n-1}(K)$. Hence R is isomorphic to a K-subalgebra of $T_{n}(K)$.

[^0]The following example show that the proposition above is not true when the field K is of characteristic 2.

Example 1. Consider the ring $R=M_{2}(G F(2))$ of 2×2 matrices over the Galois field $G F(2)$ and let M denote the set consisting of all primitive idempotents in R and zero. We can easily see that for any e, $f \in M$, ef is either an idempotent or a nilpotent element.

Next, we prove the following.
Proposition 2. Let e be a primitive idempotent of a ring R. If ef is a non-zero idempotent of R for some element $f \in R$, then ef is a primitive idempotent.

Proof. Assume that ef $=a+b$ for some orthogonal idempotents $a, b \in R$. Then $a+b=e f=e a+e b$, and so $a=(a+b) a=(e a+e b) a=e a$. Similarly, we have $b=e b$. We can easily see that $e-a e$ and $a e$ are orthogonal idempotents and $e=(e-a e)+a e$. Since e is a primitive idempotent, either $e=a e$ or $a e=0$ holds. If $e=a e$, then $b=e b=a e b=a b=0$. On the other hand, if $e=a e$, then $a=a^{2}=a e a=0$. This proves that ef is primitive.

Let R be a ring. Let M and E denote the set consisting of all primitive idempotents in R and zero and the set of idempotents in R, respectively. If S is a multiplicatively closed set of idempotents in R containing 0 , then $M \cap S$ is also multiplicatively closed.

By Zorn's lemma, we have the following.
Proposition 3. Every multiplicatively closed subset of M (resp. E) is contained in a maximal multiplicatively closed subset of M (resp. E).

Example 2. Let $M_{2}(K)$ be a ring of 2×2 matrices over a field K. We can see that $\left(e_{11}+e_{12} K\right) \cup\{0\}$ is a maximal multiplicatively closed subset of M.

Theorem 1. Let R be a ring and let M denote the set consisting of all primitive idempotents in R and zero. Suppose that there are primitive orthogonal idempotents $e_{1}, e_{2}, \cdots, e_{n}$ of R such that $1=e_{1}+e_{2}+\cdots+e_{n}$. Then $\left\{0, e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a maximal multiplicatively cosed set in M.

Proof. Suppose, on the contrary, that there is a multiplicativery colsed subset G of M which properly contains $\left\{0, e_{1}, e_{2}, \cdots, e_{n}\right\}$ and let $f \in G \backslash\left\{0, e_{1}, e_{2}, \cdots, e_{n}\right\}$. Since $e_{1} f e_{2}$ is a nilpotent element, $e_{1} f e_{2}$ must be 0 . Similarly we have $e_{1} f e_{i}=0$ for $i=3, \ldots, n$. Hence we have $e_{1} f\left(1-e_{1}\right)=e_{1} f e_{2}+\cdots+e_{1} f e_{n}=0$. Similarly we have $\left(1-e_{1}\right) f e_{1}=0$. Therefore $e_{1} f=e_{1} f e_{1}=f e_{1}$, that is e_{1} and f are commutative.

By the same way, we can see that f and e_{i} are commutative for $i=2, \cdots, n$. Now we can easily see that $e_{1} f, e_{2} f, \cdots, e_{n} f$ are primitive orthogonal idempotents. Since $1=e_{1} f+\cdots+{ }_{n} f$ and since f is primitive, we conclude that $f=e_{i} f$ for i. Since f and e_{1} are commutative, $e_{1} f$ and $e_{1}(1-f)$ are orthogonal idempotents. Since $e_{1}=e_{1} f+e_{1}(1-f)$ and since f is primitive, we see $e_{1}(1-f)=0$. Then $e_{1}=e_{1} f=f$, a contradiction.

Example 3. Consider the ring $R=\mathbf{Z}+M_{2}(\mathbf{Q}[x] x) . R$ is an order of $M_{2}(\mathbf{Q}[x])$.
We can easily see that the idempotents of R are only 0 and 1 .
Theorem 2. Let R be a ring and let M denote the set consisting of all primitive idempotents in R and zero. Suppose that 1 is a sum of primitive orthogonal idempotents. Then M is closed under multiplication if and only if R is a direct sum of rings with no non-trivial idempotents.

Proof. Suppose that M is closed under multiplication and that there are primitive orthogonal idempotents $e_{1}, e_{2}, \cdots, e_{n}$ of R such that $1=e_{1}+e_{2}+\cdots+e_{n}$. Since $\left\{0, e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a maximal multiplicatively cosed set in M by Theorem 1 , we conclude that $M=\left\{0, e_{1}, e_{2}, \cdots, e_{n}\right\}$. Then $e_{1}, e_{2}, \cdots, e_{n}$ are central orthogonal idempotents and $R=e_{1} R \oplus \cdots \oplus e_{n} R$. Since each e_{i} is primitive, each $e_{i} R$ has no non-trivial idempotents.

In [2], D. Dolz̆an proved that M is closed under multiplication if and only if R is a direct sum of local rings $([2$, Corollary 5.6]). Now we generalize this result to semiperfect rings. Let R denote a ring and J denote its Jacobson radical. A ring R is called semiperfect if R is semilocal and idempotents of R / J can be lifted to R. All basic results concerning rings can be found in [1].

If R be a semiperfect ring, then there are primitive orthogonal idempotents $e_{1}, e_{2}, \cdots, e_{n}$ of R such that $1=e_{1}+e_{2}+\cdots+e_{n}$ and each $e_{i} R e_{i}$ is a local ring. Hence we have the following.

Corollary 1. Let R be a semiperfect ring and M be the set of all minimal idempotents and zero in R. Then the set M is closed under multiplication if and only if R is a direct sum of local rings.

Let $[M]$ denote the set $\{e R \mid e \in M\}$, that is, $[M]$ is the set of right ideals of the form $e R$ for some primitive idempotent e and the ideal 0 .

Theorem 3. Let R be a semiperfect ring and $[M]$ be the set of right ideals of the form $e R$ for some primitive idempotent e and the ideal 0 . Then the set $[M]$ is closed under multiplication if and only if R is a finite direct sum of matrix rings over some local ring.

Proof. If R is a finite direct sum of matrix ring over some local ring, then clearly M is closed under multiplication. Let e and f be two primitive idempotents of R. Then either $e R f R=0$ or $e R f R=g R$ for some primitive idempotent $g \in R$. If $e R f R=0$, then $(f R e R)^{2}=0$. In this case $f R e R$ is not a nonzero direct summand of R, and so we conclude that $f R e R=0$. If $e R f R=g R$ for some primitive idempotent $g \in R$, then $e R \supseteq g R$. Using modular law, we have $e R=$ $e R \cap(g R \oplus(1-g) R)=g R \oplus e R \cap(1-g) R$. Since $e R$ is indecomposable, we conclude that $g R=e R$. Thus $e R f R=e R$, and so $e R f R e=e R e$. Then we can write $e=\sum_{i=1}^{n} e a_{i} f b_{i} e$ for some $a_{i}, b_{i} \in R$. Since $e R e$ is a local ring, for some $k, e a_{k} f b_{k} e$ is invertible in $e R e$. Similarly there exists $c, d \in R$ such that $f c e d f$ is invertible in $f R f$. These mean that $e R \cong f R$. Since R is semiperfect, $R=e_{1} R \oplus \cdots \oplus e_{n} R$ for some primitive idempotents e_{1}, \cdots, e_{n}. By the fact proved above, $R=R_{1} \oplus \cdots \oplus R_{m}$ such that each two-sided ideal R_{i} is a finite direct sum of isomorphic indecomposable modeles. Then $R \cong \operatorname{End}\left(R_{1}\right) \oplus \cdots \oplus \operatorname{End}\left(R_{m}\right)$. Thus each $R_{i} \cong \operatorname{End}\left(R_{i}\right)$ is a matrix ring ove a local ring.

References

[1] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules, Second Edition, Springer-Verlag, New York-Heidelberg-Berlin, 1992.
[2] Dolz̆an, D.: Multiplicative sets of idempotents in a finite ring, J. Algebra 304 (2006), no. 1, 271-277.

[^0]: Modified version of this article has been submitted elsewhere for publication.

