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Conformal geometry is the study of mappings that preserve angles. The
classic examples come from elementary complex analysis: one-to-one analytic
mappings between two regions of the complex plane, including common func-
tions like polynomials and exponentials (with domains appropriately restricted).
Discrete conformal geometry refers to a theory moving results of classical con-
formal geometry and complex analysis to the discrete setting of graphs.

To do this, we must develop some notion of what discrete conformal mapping
should be. We would like to mimic the classical situation as best we can, so
let’s summarize some features that characterize them:

Angles are preserved. This is our definition, but what could this mean on a
graph?

Infinitesimal circles are mapped to infinitesimal circles. This gets a no-
tion of angle in a more useful way. The Cauchy-Riemann Equations from
complex analysis say that an analytic mapping locally behaves like a ro-
tation and a dilation, maps which take circles to circles.

Extremal length is preserved. Extremal length is a powerful conformal in-
variant that translates particularly well to the discrete setting. We will
define it formally in Section 2.

Mappings provide a conformal coordinate system on a region. If we have
a coordinate system in a region where, for example, we might have a grid
of perpendicular axes, then mapping the region conformally should carry
the grid to another one with coordinate curves remaining perpendicular.
We can think of these coordinates as instructions on how to conformally
“straighten” the set.

1 Circle Packing

As we look to discretize these properties, we recognize that “preservation of
angles” is a non-starter; we have no notion of angle for a graph. The property
that infinitesimal circles map to infinitesimal circles, however, can be made to
work.

This gives rise to the idea of a circle packing, which is a collection of circles
that meet in externally tangent triples. There is a natural graph associated to
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Figure 1: A circle packing with centers connected to show the tangency graph. All
boundary circles are internally tangent to the unit circle, illustrating the discrete Rie-
mann mapping theorem. Drawn with Ken Stephenson’s CirclePack software.[11]

any circle packing. Vertices correspond to the circles and two vertices form an
edge if their corresponding circles are tangent in the packing. We can see this
graph by connecting the centers of the packed circles.

The radii of the circles are positive weights on the vertices. If we change
the radii of the circles without changing the tangencies, the packing will look
different but the underlying graph is unchanged. This is our notion of a discrete
analytic function, borrowing from our working property of conformal mapping
but removing the discrete-unfriendly word “infinitesimal.” We should expect
to see this “infinitesimal” emerge as some kind of limit in our discrete model.
We will illustrate exactly that by first considering one of the most celebrated
theorems in classical analysis.

Theorem 1 (Riemann Mapping Theorem) Any open simply connected proper
subset of the complex plane can be mapped to the open unit disk by a bijective
analytic map. This map is unique up to automorphisms of the disk.

This is amazing. Conformality seems to be a strong condition, but it is
sufficient to take any pathological simply connected monstrosity nicely onto
the disk. Moreover, the condition is essentially unique after accounting for the
three-parameter family of maps from the disk to itself.

Here is the discrete analog:

Theorem 2 (Discrete Riemann Mapping Theorem) Any finite triangu-
lation of a disk realizes a circle packing whose boundary circles are internally
tangent to the unit circle.
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This theorem was established as a linchpin for discrete conformal geometry
by William Thurston (although it was actually proved much earlier, c.f. [2], [8],
[13]). To see how the two versions tie to together, consider a bounded simply
connect region R in the plane. Cover the plane with the “penny packing” formed
by a packing of identical circles with each circle tangent to exactly six neighbors.
Carve out a portion of this packing including every circle whose interior contains
at least one point in R. If the radius of the packed circles is small relative to R,
then the region filled by this collection of circles should approximate R.

This is a circle packing. By the Discrete Riemann Mapping Theorem, the
radii of these currently identical circles may be adjusted without altering the
underlying combinatorics so that the boundary circles lie internally tangent to
the unit circle, and indeed algorithms exist to approximate these radii. We
impose uniqueness by, say, forcing some chosen circle to map to the origin and
another to lie on the positive real axis. This discrete analytic mapping takes
a point in R that is a center of a circle to a point inside the unit disk, which
is the center of its corresponding circle. We can extend continuously to points
that are not centers by using barycentric coordinates. Now we see how to get
that limiting process we wanted. Repeat this procedure on penny packings of
smaller and smaller radius (with consistent normalizations), giving better and
better approximations to the region R.

Theorem 3 The sequence of discrete analytic mappings described above con-
verges uniformly on compact sets to the Riemann Mapping of R to the disk, with
the corresponding normalizations.

The first version of this theorem was proved by Rodin and Sullivan in [9]
and has since been extended in various ways. He and Schramm [7] proved a
version powerful enough to count as an alternate proof of the Riemann Mapping
Theorem itself. (We are overlooking a long story about the precise statements
of these results, among other things. See [12] and the references therein.)

2 Extremal Length

Of significant interest is determining which sets can be mapped to one another
by a conformal mapping, in which case we call the sets conformally equivalent.
The Riemann Mapping Theorem essentially says that all proper open simply
connected subsets of the plane are conformally equivalent. The story gets more
interesting with quadrilaterals, where we further require that the mapping to
carry vertices to vertices. A conformal invariant is a property that must be
shared by two conformally equivalent sets.

Define a topological quadrilateral to be a simply connected domain with four
distinguished vertices that divide the boundary into four arcs. Choose one non-
intersecting pair of these arcs to be the “top” and “bottom.”

Extremal length is a conformal invariant developed by Lars Ahlfors [1] and
has emerged as a powerful tool in conformal geometry. We will skip to the
punchline to motivate this tool. The Riemann Mapping Theorem tells us that
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any open simply connected region in the complex plane can be mapped confor-
mally to a disk. Consider this domain as a topological quadrilateral we wish
to map to a rectangle with vertices mapping to corresponding vertices. The
Riemann mapping is unique up to three parameters of automorphisms, so spec-
ifying four points costs us a degree of freedom. We pay this debt in the aspect
ratio (length divided by width) of the image rectangle, which is forced upon us
and is a conformal invariant of the quadrilateral. This will turn out to be the
extremal length, although we actually define it in terms of path families.

Define a metric to be a positive function on the quadrilateral Q and its area
to be

∫ ∫
Q
m2 dA. We restrict ourselves to the set Λ of metrics with positive

area. If γ is a curve lying in Q, its length with respect to a metric m is
∫
γ
m dγ.

Finally, let Γ be the set of all rectifiable curves in Q connecting the top arc to
the bottom. Extremal length is defined as follows.

EL(Q) = sup
m∈Λ

infγ∈Γ(
∫
γ
m |dz|)2∫ ∫

m2 dA

The infimum in the numerator is finding the shortest (squared) length path
connecting opposite sides with respect to a metric. The denominator is the
area. Thinking of rectangles, this is just

length2

area
=

length2

length× width
=

length

width
,

which is the aspect ratio. It thus makes some sense to define the quantity inside
the supremum as the aspect ratio of the metric. The supremum then searches
through all metrics on the quadrilateral for the one with the largest aspect ratio.
It turns out that this metric exists and is indeed the norm of the derivative of the
Riemann mapping onto a rectangle. Note that the ratio of length over width is
automatically scale invariant so we often restrict to metrics normalized to area
one. To see that this is a conformal invariant, consider another quadrilateral
Q′ that is conformally equivalent to Q. By definition, there is some conformal
mapping ρ from Q to Q′, and |ρ′| will necessarily by included in Λ. In other
words, the supremum automatically sifts through conformal equivalences. We
should note that the definition of extremal length puts no restrictions on the
set Γ of curves and there are lots of reasons to study other curve families, but
curves connecting opposite sides of quadrilaterals are sufficient for our purposes.
We also point out that the choice of which pair of arcs are the top and bottom
does matter, but choosing the other pair simply reciprocates the aspect ratio
(i.e., switches the roles of length and width).

This definition is easy to port to a discrete setting – we just change the
regions to graphs, the curves to vertex paths, and the integrals to sums.

EL(G) = sup
ρ∈Λ̂

infγ∈Γ̂(
∑
v∈γm(v))2∑

v∈V m(v)2

G is a combinatorial quadrilateral, defined as a planar triangulation with
boundary divided into four vertex paths, with two disjoint arcs designated the
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Figure 2: A square tiling of a 176 × 177 rectangle. The extremal length of the
associated discrete quadrilateral is thus 177

176
. This is one of the first examples of a

perfect tiling in which no two squares are congruent [4].

“top” and “bottom,” just as in the classical case. Λ̂ is the set of positive func-
tions m on the vertices V of G with area

∑
v∈V m(v)2 > 0, and Γ̂ is the set of

vertex paths in G connecting the top of G to the bottom.
The proof that extremal length exists is not too hard. Consider a vector

space whose basis is the set of vertices of G. Then a metric, being an assignment
of values to each vertex, is an element of this finite-dimensional vector space.
Since extremal length is scale invariant, we may restrict to unit area metrics,
i.e. points on the unit sphere in our vector space. One need only verify that
the aspect ratio is a continuous function, so we are looking for a maximum of a
continuous function on a compact set, which always exists. Uniqueness can be
proved from convexity of the sphere. See [5] for details.

So the metric exists and is unique, but what is it? It turns out that if we
use the graph as a tangency graph for squares of side length m(v), then those
squares will fit together in a perfect rectangle. Like the classical case, we have
no control over the aspect ratio of the rectangle, which will be the extremal
length. These square tilings of rectangles are similar to circle packings except
that the non-smoothness of squares requires us to allow some degenerate cases.

An interesting schism in the theory now emerges. If we refine the graph as we
did with circle packings, the discrete mappings induced by square tilings will not
generally converge to the Riemann mapping of a region to a rectangle. Extremal
length captures some aspects of conformality and circle packings capture others.
Discretization has finally cost us.

3 Electric Networks and Other Models

We now consider how Riemann himself thought about conformal mapping. Sup-
pose we have a topological cylinder made from some conductive metal. Connect
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a battery to the two boundary circles to draw a current from one boundary circle
to the other. The electrons will move between these circles along flow lines while
the curves of equal potential will necessarily be orthogonal to these flow lines.
But then these flow lines and equipotential curves give conformal coordinates
that map the topological cylinder to a straight rectangular one, which was our
final feature of conformal mappings. The resistance of this is system – which is
clearly predetermined by the physical interpretation – will be captured by the
height of the rectangular cylinder. This is extremal length again.

To discretize this idea, consider the edges of a graph to be wires with unit
resistance. If we draw a current between the boundary components, then there
will be some effective resistance between the components. This can sometimes
be computed using Kirchoff’s Laws. This approach brings us back to square
tiling, although here the squares are represented by edges rather than vertices.
See [3] for a nice exposition.

A similar model is random walk. Doyle and Snell [6] show that this is
equivalent to the electric network model by showing that they both arise from
discrete harmonic functions (i.e., functions whose values are the averages of
the values of neighboring points). These functions are uniquely determined by
boundary conditions, so the two systems must yield the same functions. The
classical analog is Brownian motion.

Other models can be obtained from different kinds of packings. We have
studied circles and squares, but many similar results can be obtained by packing
more general shapes. We may also relax the tangency condition (necessary if we
start varying the shapes of tiles). Most models tend to behave similarly if the
underlying triangulations have bounded degree, meaning there is an N > 0 such
that every vertex has at most N adjacent vertices. This condition can usually
translate into a bound on how the discrete function deviates from a conformal
mapping, inviting techniques of quasiconformal analysis to force nice limiting
behaviors. Without this condition, however, quasiconformal methods fail and
the peculiarities of the models reveal themselves.

4 Onward

All of our characterizations of conformal mapping have discrete analogs, but
different characterizations required meaningfully different models. Discrete con-
formal geometry has grown into a large field with powerful theoretical and com-
putational results. As mathematicians push these results further, however, the
gaps between the different models become more interesting.

For example, let’s tweak our definition of extremal length by assigning the
metric to the edges of the graph instead of to the vertices. Everything else about
the definition as maximal aspect ratio remains the same. It does not seem at
first blush that this should change the story much, but it turns out that the
switch from vertices to edges recaptures the circle packing versus square tiling
dichotomy. See [14].

Many questions remain open about each of these models, and many more
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are available if we want to look deeply into the differences among them. The
insights we gain into how these models do and do not capture classical behaviors
have potential to lead to more effective use of these tools as we pursue questions
in both settings.
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