Infinite groups and primitivity of their group rings

Tsunekazu Nishinaka *
Department of Business Administration
Okayama Shoka University

A ring R is (right) primitive provided it has a faithful irreducible (right) R-module. If non-trivial group G is finite or abelian, then the group algebra $K G$ over a field K cannot be primitive. If G has non-abelian free subgroups, then $K G$ is often primitive. In the present note, we focus on a local property which is often satisfied by groups with non-abelian free subgroups:
$(*)$ For each subset M of G consisting of finite number of elements not equal to 1 , there exist three distinct elements a, b, c in G such that whenever $x_{i} \in\{a, b, c\}$ and $\left(x_{1}^{-1} g_{1} x_{1}\right) \cdots\left(x_{m}^{-1} g_{m} x_{m}\right)=1$ for some $g_{i} \in M, x_{i}=x_{i+1}$ for some i.
We can see that the group algebra $K G$ of a group G over a field K is primitive provided G has a free subgroup with the same cardinality as G and satisfies (*). In particular, for every countably infinite group G satisfying $(*), K G$ is primitive for any field K. As an application of this theorem, we can see primitivity of group algebras of many kinds of groups with non-abelian free subgroups which includes a recent result; the primitivity of group algebras of one relator groups with torsion.

1 A brief history of the research

Let R be a ring with the identity element. It need not to be commutative. A ring R is right primitive if and only if there exists a faithful irreducible right R module M_{R}, where M_{R} is irreducible provided it has no non-trivial submodules, and M_{R} is faithful provided the annihilator of M is zero: $\operatorname{ann}\left(M_{R}\right)=\{r \in$ $R \mid M r=0\}=0$. The above definition of primitivity is equivalent to the following: A ring R is right primitive if and only if there exists a maximal right ideal ρ which contains no non-trivial ideals of R. A left primitive ring is similarly defined. In what follows, for right primitive, we simply call it primitive. Speaking of a group ring, a right primitive group ring is always left primitive. In this section, we introduce briefly a history of the research to primitivity of group rings.

Since the group ring $K G$ of a non-trivial group G over a field K has always the augmentation ideal which is non-trivial, it cannot be a simple ring. If G is a finite group, then $K G$ is a finite dimensional algebra and so it is never primitive because a finite dimensional algebra is simple provided it is primitive. Moreover,

[^0]if a commutative ring is primitive, then it is a field, and therefore if $G \neq 1$ is abelian, then $K G$ is never primitive. Hence primitivity of $K G$ is appeared only in the case that G is non-abelian and non-finite. For the longest time no examples of primitive group rings were known, and it was thought that $K G$ could not be primitive provided $G \neq 1$.

The first example of primitive group rings was offered by Formanek and Snider [7] in 1972, and in 1973 Formanek [6] gave the primitivity of group rings of wellknown groups; namely the primitivity of group rings of free products.

Theorem 1.1. (Formanek[6]) Let G be a free product of non-trivial groups (except $\left.G=\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$; Then $K G$ is primitive for any field K.

In particular, if G is a free group then $K G$ is primitive for any field K. After that, many examples of primitive group rings were constructed. In 1978, Domanov [4], Farkas-Passman [5] and Roseblade [17] gave the complete solution for primitivity of group rings of polycyclic-by-finite groups.

Theorem 1.2. (Domanov[4], Farkas-Passman[5],Roseblade[17]) Let G be a nontrivial polycyclic-by-finite group. Then $K G$ is primitive if and only if $\Delta(G)=1$ and K is non-absolute, where $\Delta(G)=\left\{g \in G \mid\left[G: C_{G}(g)\right]<\infty\right\}$ and K is absolute if it is algebraic over a finite field.

Polycyclic-by-finite groups are belong to the class of noetherian groups, and it is not easy to find a noetherian group which is not polycyclic-by-finite [15]. Therefore almost all other known infinite groups belong to the class of non-noetherian groups. As is well known, if $K G$ is noetherian then G is also noetherian, but the converse is not true generally. A group of the class of finitely generated non-noetherian groups has often non-abelian free subgroups; for instance, a free group, a locally free group, a free product, an amalgamated free product, an HNN-extension, a Fuchsian group, a one relator group, etc. It is known that a free Burnside group is not the case, though. After the result Theorem 1.1 above, primitivity of group rings of known groups which are non-noetherian has been obtained gradually. Theorem 1.1 was generalized to one for amalgamated free products by Balogun in 1989:

Theorem 1.3. ([1, Balogun, '89]) Let $G=A *_{H} B$ be the free product of A and B with H amalgamated. If there exist elements $a \in A \backslash H$ and $b \in B \backslash H$ such that $a^{2}, b^{2} \notin H, a^{-1} H a \cap H=1$ and $b^{-1} H b \cap H=1$, then $K G$ is primitive for any field K.

In 1997, the primitivity of semigroup algebras of free products was given by Chaudhry, Crabb and McGregor [2].

The primitivity of a group ring of a free group F extended to one for the ascending HNN extension $G=F_{\varphi}$ of a free group F; for the case of $|F|=\aleph_{0}$ in 2007 and for the case of arbitrary cardinality of F in 2011:

Theorem 1.4. ([13, Nishinaka, '07], [14, Nishinaka, '11]) Let F be a non-abelian free group, and $G=F_{\varphi}$ the ascending HNN extension of F determined by φ. Then the following are equivalent:
(1) $K G$ is primitive for a field K.
(2) $|K| \leq|F|$ or G is not virtually the direct product $F \times \mathbb{Z}$.
(3) $|K| \leq|F|$ or $\triangle(G)=1$.

In particular, if G is a strictly ascending HNN extension, that is, $\varphi(F) \neq F$, then $K G$ is primitive for any field K.

Moreover, the primitivity of group rings of free groups extended to one for locally free groups:

Theorem 1.5. ([14, Nishinaka, '11]) Let G be a non-abelian locally free group which has a free subgroup whose cardinality is the same as that of G itself. If K is a field then $K G$ is primitive.

In particular, every group ring of the union of an ascending sequence of nonabelian free groups over a field is primitive, and so every group ring of a countable non-abelian locally free group over a field is primitive.

Now, there is no viable conjecture as to when $K G$ is primitive for arbitrary groups. There exists a non-primitive $K G$ for any field K even in the case that $K G$ is semiprimitive and $\Delta(G)=1$ (See [3]).

2 Group algebras of groups with free subgroups

In the present note, we focus on a local property which is often satisfied by groups with non-abelian free subgroups:
(*) For each subset M of G consisting of finite number of elements not equal to 1 , there exist three distinct elements a, b, c in G such that whenever $x_{i} \in\{a, b, c\}$ and $\left(x_{1}^{-1} g_{1} x_{1}\right) \cdots\left(x_{m}^{-1} g_{m} x_{m}\right)=1$ for some $g_{i} \in M, x_{i}=x_{i+1}$ for some i.

We can see that if G is countably infinite group and satisfies $(*)$, then $K G$ is primitive for any field K. More generally, we can get the following theorem:

Theorem 2.1. Let G be a non-trivial group which has a free subgroup whose cardinality is the same as that of G. Suppose that G satisfies the condition (*). If R is a domain with $|R| \leq|G|$, then the group ring $R G$ of G over R is primitive.

In particular, the group algebra $K G$ is primitive for any field K.

As an application of the theorem, we give the primitivity of group algebras of one relator groups with torsion:

Theorem 2.2. If G is a non-cyclic one relator group with torsion, then $K G$ is primitive for any field K.

One of the main method to prove Theorem 2.1 is a graph theoretic method which is called SR-graph theory.

3 SR-graph theory

Let $\mathcal{G}=(V, E)$ denote a simple graph; a finite undirected graph which has no multiple edges or loops, where V is the set of vertices and E is the set of edges. A finite sequence $v_{0} e_{1} v_{1} \cdots e_{p} v_{p}$ whose terms are alternately elements e_{q} 's in E and v_{q} 's in V is called a path of length p in \mathcal{G} if $v_{q} \neq v_{q^{\prime}}$ for any $q, q^{\prime} \in\{0,1, \cdots, p\}$ with $q \neq q^{\prime}$; it is often simply denoted by $v_{0} v_{1} \cdots v_{p}$. Two vertices v and w of \mathcal{G} are said to be connected if there exists a path from v to w in \mathcal{G}. Connection is an equivalence relation on V, and so there exists a decomposition of V into subsets C_{i} 's $(1 \leq i \leq m)$ for some $m>0$ such that $v, w \in V$ are connected if and only if both v and w belong to the same set C_{i}. The subgraph $\left(C_{i}, E_{i}\right)$ of \mathcal{G} generated by C_{i} is called a (connected) component of \mathcal{G}. Any graph is a disjoint union of components. For $v \in V$, we denote by $C(v)$ the component of \mathcal{G} which contains the vertex v.

We define a graph which has two distinct edge sets E and F on the same vertex set V. We call such a triple (V, E, F) an SR-graph provided that $(V, E \cup F)$ is a simple graph (i.e. a finite undirected graph which has no multiple edges or loops) and every component of the graph (V, E) is a complete graph (see Fig 1 and Fig 2). That is, we define an SR-graph as follows:

Definition 3.1. Let $\mathcal{G}=(V, E)$ and $\mathcal{H}=(V, F)$ be simple graphs with the same vertex set V. For $v \in V$, let $U(v)$ be the set consisting of all neighbours of v in \mathcal{H} and v itself: $U(v)=\{w \in V \mid v w \in F\} \cup\{v\}$. A triple (V, E, F) is an SR-graph (for a sprint relay like graph) if it satisfies the following conditions:
(SR1) For any $v \in V, C(v) \cap U(v)=\{v\}$.
(SR2) Every component of \mathcal{G} is a complete graph.
If \mathcal{G} has no isolated vertices, that is, if $v \in V$ then $v w \in E$ for some $w \in V$, then SR-graph (V, E, F) is called a proper $S R$-graph.

We call $U(v)$ the SR-neighbour set of $v \in V$, and set $\mathfrak{U}(V)=\{U(v) \mid v \in V\}$. For $v, w \in V$ with $v \neq w$, it may happen that $U(v)=U(w)$, and so $|\mathfrak{U}(V)| \leq|V|$ generally. Let $\mathcal{S}=(V, E, F)$ be an SR-graph. We say \mathcal{S} is connected if the graph $(V, E \cup F)$ is connected.

Fig 1. An example of an SR-graph: bold solid lines are edges in E and normal solid lines are edges in F. Sequences $\left(e_{1}, f_{1}, e_{2}, f_{3}, e_{4}, f_{4}\right)$), $\left(e_{1}\right.$, $\left.f_{2}, e_{3}, f_{3}, e_{2}, f_{5}\right)$ and ($\left.e_{1}, f_{2}, e_{5}, f_{4}\right)$ are SR-cycles.

Fig 2. Prohibits : It is not allowed to exist the above subgraph in an SR-graph.

Definition 3.2. Let $\mathcal{S}=(V, E, F)$ be an $S R$-graph and $p>1$. Then a path $v_{1} w_{1} v_{2} w_{2}, \cdots, v_{p} w_{p} v_{p+1}$ in the graph $(V, E \cup F)$ is called a SR-path of length p in \mathcal{S} if either $e_{q}=v_{q} w_{q} \in E$ and $f_{q}=w_{q} v_{q+1} \in F$ or $f_{q}=v_{q} w_{q} \in F$ and $e_{q}=w_{q} v_{q+1} \in E$ for $1 \leq q \leq p$; simply denoted by $\left(e_{1}, f_{1}, \cdots, e_{p}, f_{p}\right)$ or $\left(f_{1}, e_{1}, \cdots, f_{p}, e_{p}\right)$, respectively. If, in addition, it is a cycle in $(V, E \cup F)$; namely, $v_{p+1}=v_{1}$, then it is an $S R$-cycle of length p in \mathcal{S}.

To prove Theorem 2.1, we use some results for SR-graphs and apply them to the Formanek's method. We can give Formanek's method, as follows:

Proposition 3.3. (See [6]) Let $R G$ be the group ring of a group G over a ring R with identity. If for each non-zero $a \in R G$, there exists an element $\varepsilon(a)$ in the ideal $R G a R G$ generated by a such that the right ideal $\rho=\sum_{a \in R G \backslash\{0\}}(\varepsilon(a)+1) R G$ is proper; namely, $\rho \neq R G$, then $R G$ is primitive.

The main difficulty here is how to choose elements $\varepsilon(a)$'s so as to make ρ be proper. Now, ρ is proper if and only if $r \neq 1$ for all $r \in \rho$. Since ρ is generated by the elements of form $(\varepsilon(a)+1)$ with $a \neq 0, r$ has the presentation, $r=\sum_{(a, b) \in \Pi}(\varepsilon(a)+1) b$, where Π is a subset which consists of finite number of elements of $R G \times R G$ both of whose components are non-zero. Moreover, $\varepsilon(a)$ and b are linear combinations of elements of G, and so we have

$$
\begin{equation*}
r=\sum_{(a, b) \in \Pi} \sum_{g \in S_{a}, h \in T_{b}}\left(\alpha_{g} \beta_{h} g h+\beta_{h} h\right), \tag{1}
\end{equation*}
$$

where S_{a} and T_{b} are the support of $\varepsilon(a)$ and b respectively and both α_{g} and β_{h} are elements in K. In the above presentation (1), if there exists $g h$ such that $g h \neq 1$ and does not coincide with the other $g^{\prime} h^{\prime \prime}$ s and $h^{\prime \prime}$ s, then $r \neq 1$ holds. Strictly speaking: Let $\Omega_{a b}=S_{a} \times T_{b}$. If there exist $(a, b) \in \Pi$ and (g, h) in $\Omega_{a b}$ with $g h \neq 1$ such that $g h \neq g^{\prime} h^{\prime}$ and $g h \neq h^{\prime}$ for any $(c, d) \in \Pi$ and for any $\left(g^{\prime}, h^{\prime}\right)$ in $\Omega_{c d}$ with $\left(g^{\prime}, h^{\prime}\right) \neq(g, h)$, then $r \neq 1$ holds.

On the contrary, if $r=1$, then for each $g h$ in (1) with $g h \neq 1$, there exists another $g^{\prime} h^{\prime}$ or h^{\prime} in (1) such that either $g h=g^{\prime} h^{\prime}$ or $g h=h^{\prime}$ holds. Suppose here that there exist $\left(g_{2 i-1}, h_{i}\right)$ and $\left(g_{2 i}, h_{i+1}\right)(i=1, \cdots, m)$ in $V=\bigcup_{(a, b) \in \Pi} \Omega_{a b} \cup T_{b}$ such that the following equations hold:

$$
\begin{align*}
g_{1} h_{1}= & g_{2} h_{2}, \\
& g_{3} h_{2}= \tag{2}\\
& g_{4} h_{3}, \\
& \ddots \\
& g_{2 m-1} h_{m}=g_{2 m} h_{m+1} \quad \text { and } \quad h_{m+1}=h_{1} .
\end{align*}
$$

Eliminating h_{i} 's in the above, we can see that these equations imply the equation $g_{1}^{-1} g_{2} \cdots g_{2 m-1}^{-1} g_{2 m}=1$. If we can choose $\varepsilon(a)$'s so that their supports g_{i} 's never satisfy such an equation, then we can prove that $r \neq 1$ holds by contradiction. We need therefore only to see when supports g 's of $\varepsilon(a)$'s satisfy equations as described in (2).

Fig 3. Equations as described in (2) for $\mathrm{m}=4$.
Roughly speaking, we regard V above as the set of vertices and for $v=(g, h)$ and $w=\left(g^{\prime}, h^{\prime}\right)$ in V, we take an element $v w$ as an edge in E provided $g h=g^{\prime} h^{\prime}$ in G, and take $v w$ as an edge in F provided $g \neq g^{\prime}$ and $h=h^{\prime}$ in G (see Fig 3). In this situation, if there exists an SR-cycle $v_{1} w_{1} v_{2} w_{2}, \cdots, v_{p} w_{p} v_{1}$ in the SR-graph (V, E, F) whose adjacent terms are alternately elements $v_{i} w_{i}$ in E and $w_{i} v_{i+1}$ in F, then there exist $\left(g_{i}, h_{j}\right)$'s in V satisfying the desired equations as described in (2). Thus the problem can be reduced to find an SR-cycle in a given SR-graph.

By making use of graph theoretic considerations, we can prove the following
theorems:
Theorem 3.4. Let $\mathcal{S}=(V, E, F)$ be an $S R$-graph and let ω_{E} and ω_{F} be, respectively, the number of components of $\mathcal{G}=(V, E)$ and $\mathcal{H}=(V, F)$. Suppose that every component of $\mathcal{H}=(V, F)$ is a complete graph and \mathcal{S} is connected. Then \mathcal{S} has an SR-cycle if and only if $\omega_{E}+\omega_{F}<|V|+1$.

In particular, if \mathcal{S} is proper and $\alpha \leq \gamma$ then \mathcal{S} has an $S R$-cycle.

Theorem 3.5. Let $\mathcal{S}=(V, E, F)$ be an $S R$-graph and $\mathfrak{C}(V)=\left\{V_{1}, \cdots, V_{n}\right\}$ with $n>0$. Suppose that every component $\mathcal{H}_{i}=\left(V_{i}, F_{i}\right)$ of \mathcal{H} is a complete k-partite graph with $k>1$, where k is depend on \mathcal{H}_{i}. If $\left|V_{i}\right|>2 \mu\left(\mathcal{H}_{i}\right)$ for each $i \in\{1, \cdots, n\}$ and $\left|I_{\mathcal{G}}(V)\right| \leq n$ then \mathcal{S} has an $S R$-cycle.

4 Proof of Theorem 2.1

Let G be a group and M_{1}, \cdots, M_{n} non-empty subsets of G which do not include the identity element. We say M_{1}, \cdots, M_{n} are mutually reduced in G if for each finite elements g_{1}, \cdots, g_{m} in the union of $M_{i}{ }^{\prime}$ s, $g_{1} \cdots g_{m}=1$ implies both g_{i} and g_{i+1} are in the same M_{j} for some i and j. If $M_{1}=\left\{x_{1}^{ \pm 1}\right\}, \cdots, M_{m}=\left\{x_{m}^{ \pm 1}\right\}$ and they are mutually reduced, then we say simply x_{1}, \cdots, x_{m} are mutually reduced.

In this section, we shall prove Theorem 2.1 after preparing three lemmas.
Lemma 4.1. (See [16, Theorem 2]) Let K^{\prime} be a field and G a group. If $\triangle(G)$ is trivial and $K^{\prime} G$ is primitive, then for any field extension K of $K^{\prime}, K G$ is primitive.

By making use of Theorem 3.4 and Theorem 3.5, we can get the next two lemmas:

Lemma 4.2. Let G be a non-trivial group, $m>0$ and $n>0$. For non-trivial distinct elements $f_{i j}$'s $(i=1,2,3, j=1, \cdots, m)$ in G and for distinct elements g_{i} 's $(i=1, \cdots, n)$ in G, we set

$$
\begin{aligned}
& S=\bigcup_{i=1}^{3} S_{i} \text {, where } S_{i}=\left\{f_{i j} \mid 1 \leq j \leq m\right\}, \\
& T=\left\{g_{i} \mid 1 \leq i \leq n\right\} \text {, } \\
& V=S \times T \text {, } \\
& M_{i}=\left\{f_{i j}^{ \pm 1}, f_{i j}^{-1} f_{i k} \mid j, k=1,2, \cdots, m, j \neq k\right\}(i=1,2,3) \text {, } \\
& I=\left\{(f, g) \in V \mid f g \neq f^{\prime} g^{\prime} \text { for any }\left(f^{\prime}, g^{\prime}\right) \in V \text { with }\left(f^{\prime}, g^{\prime}\right) \neq(f, g)\right\} .
\end{aligned}
$$

Then if M_{1}, M_{2} and M_{3} are mutually reduced, then $|I|>n$.

Lemma 4.3. Let G be a non-trivial group and $n>0$. For each $i=1,2, \cdots, n$, let $f_{i 1}, \cdots, f_{i m_{i}}$ be distinct $m_{i}>0$ elements of $G ; f_{i p} \neq f_{i q}$ for $p \neq q$, and let $x_{i j}$ $(1 \leq i \leq n, 1 \leq j \leq 3)$ be distinct elements in G. we set

$$
\begin{aligned}
S & =\bigcup_{i=1}^{3} S_{i}, \text { where } S_{i}=\left\{f_{i j} \mid 1 \leq j \leq m_{i}\right\}, \\
X & =\bigcup_{i=1}^{n} X_{i}, \text { where } X_{i}=\left\{x_{i j} \mid 1 \leq j \leq 3\right\}, \\
V & =\bigcup_{i=1}^{n} V_{i} \text {, where } V_{i}=X_{i} \times S_{i}, \\
I & =\left\{(x, f) \in V \mid x f \neq x^{\prime} f^{\prime} \text { for any }\left(x^{\prime}, f^{\prime}\right) \in V \text { with }\left(x^{\prime}, f^{\prime}\right) \neq(x, f)\right\} .
\end{aligned}
$$

If $x_{i j}$'s are mutually reduced elements, then $|I|>m$, where $m=m_{1}+\cdots+m_{n}$.

Proof of Theorem 2.1. Let B be the basis of a free subgroup of G whose cardinality is the same as that of G. Then we may assume that the cardinality of B is also same as G, that is, $|B|=|G|$. In addition, since $|R| \leq|G|$, we have that $|B|=|R G|$. We can divide B into three subsets B_{1}, B_{2} and B_{3} each of whose cardinality is $|B|$. It is then obvious that the elements in B are mutually reduced. Let φ be a bijection from B to $R G \backslash\{0\}$ and σ_{s} a bijection from B to $B_{s}, s=1,2,3$.

For $b \in B$, let $\varphi(b)=\sum_{f \in F_{b}} \alpha_{f} f$, where $\alpha_{f} \in R$ and F_{b} is the support of $\varphi(b)$. We set

$$
M_{b}=\left\{f^{ \pm 1}, f^{-1} f^{\prime} \mid f, f^{\prime} \in F_{b}, f \neq f^{\prime}\right\} .
$$

Since G satisfies the condition (*), there exist $x_{b 1}, x_{b 2}, x_{b 3} \in G$ such that $M_{b}^{x_{b t}}=$ $\left\{x_{b t}^{-1} f^{ \pm 1} x_{b t}, x_{b t}^{-1} f^{-1} f^{\prime} x_{b t} \mid f, f^{\prime} \in F_{b}, f \neq f^{\prime}\right\}(t=1,2,3)$ are mutually reduced. We here define $\varepsilon(b)$ and $\varepsilon^{1}(b)$ by

$$
\begin{equation*}
\varepsilon(b)=\sum_{s=1}^{3} \sum_{t=1}^{3} \sigma_{s}(b) x_{b t}^{-1} \varphi(b) x_{b t} \text { and } \varepsilon^{1}(b)=\varepsilon(b)+1 \tag{3}
\end{equation*}
$$

Note that $\varepsilon(b)$ is an element in the ideal of $R G$ generated by $\varphi(b)$. Let $\rho=$ $\sum_{b \in B} \varepsilon^{1}(b) R G$ be the right ideal generated by $\varepsilon^{1}(b)$ for all $b \in B$. If $w \in \rho$, then we can express w by

$$
\begin{equation*}
w=\sum_{b \in A} \varepsilon^{1}(b) u_{b}=\sum_{b \in A}\left(\varepsilon(b) u_{b}+u_{b}\right) \tag{4}
\end{equation*}
$$

for some non-empty finite subsets A of B and u_{b} in $R G$. In view of Proposition 3.3, in order to prove that $R G$ is primitive, we need only show that ρ is proper; $\rho \neq R G$. To do this, it suffices to show that $w \neq 1$.

Let $u_{b}=\sum_{h \in H_{b}} \beta_{h} h$, where H_{b} is the support of u_{b}. Substituting this and $\varphi(b)=\sum_{f \in F_{b}} \alpha_{f} f$ into (3), we obtain the following expression of $\varepsilon(b) u_{b}$:

$$
\begin{equation*}
\varepsilon(b) u_{b}=\sum_{s=1}^{3} \sum_{t=1}^{3} \sum_{f \in F_{b}} \sum_{h \in H_{b}} \alpha_{f} \beta_{h} y_{b s} x_{b t}^{-1} f x_{b t} h, \text { where } y_{b s}=\sigma_{s}(b) . \tag{5}
\end{equation*}
$$

In what follows, for the sake of convenience, we represent $y_{b s} x_{b t}^{-1} f x_{b t} h$ by $y_{s} x_{t}^{-1} f x_{t} h$, and we note that y_{s} and x_{t} are depend on $b \in B$. For $s=1,2,3$, we here set

$$
\begin{equation*}
E_{b s}=\sum_{t=1}^{3} \sum_{f \in F_{b}} \sum_{h \in H_{b}} \alpha_{f} \beta_{h} y_{s} \xi\left(x_{t}, f, h\right), \text { where } \xi\left(x_{t}, f, h\right)=x_{t}^{-1} f x_{t} h \tag{6}
\end{equation*}
$$

That is, $\varepsilon(b) u_{b}=E_{b 1}+E_{b 2}+E_{b 3}$. We can see that there exist more than $\left|H_{b}\right|$ isolated elements in the expression (6) of $E_{b s}$ for each $s=1,2,3$. Strictly speaking, if we set $X_{b}=\left\{x_{1}, x_{2}, x_{3}\right\}, \Gamma_{b}=X_{b} \times F_{b} \times H_{b}$ and

$$
\begin{aligned}
& I_{s}=\left\{\left(x_{t}, f, h\right) \quad \mid\left(x_{t}, f, h\right) \in \Gamma_{b}, \xi\left(x_{t}, f, h\right) \neq \xi\left(x_{p}, f^{\prime}, h^{\prime}\right)\right. \\
&\text { for any } \left.\left(x_{p}, f^{\prime}, h^{\prime}\right) \in \Gamma_{b} \text { with }\left(x_{p}, f^{\prime}, h^{\prime}\right) \neq\left(x_{t}, f, h\right)\right\},
\end{aligned}
$$

then $\left|I_{s}\right|>\left|H_{b}\right|$. In fact, since $M_{b}^{x_{b t}}(t=1,2,3)$ are mutually reduced, it follows from lemma 4.2 that $\left|I_{s}\right|>\left|H_{b}\right|$.

Now, we shall see that $w \neq 1$ holds, where w as in (4). In (4), we set that $w_{1}=\sum_{b \in A} \varepsilon(b) u_{b}$ and $w_{2}=\sum_{b \in A} u_{b}$. We have then that

$$
w_{1}=\sum_{b \in A} \sum_{s=1}^{3} E_{b s} \text { and } w=w_{1}+w_{2}
$$

Let $\operatorname{Supp}\left(E_{b s}\right)$ be the support of $E_{b s}$ and $m_{b}=\left|\operatorname{Supp}\left(E_{b 1}\right)\right|$. We should note that $\left|\operatorname{Supp}\left(E_{b s}\right)\right|=m_{b}$ for all $s=1,2,3$. It is obvious that $m_{b} \geq\left|I_{s}\right|$, and so $m_{b}>\left|H_{b}\right|$ by the above. Since $y_{b s}(b \in A, 1 \leq s \leq 3)$ are mutually reduced, by virtue of Lemma 4.3, we have $\left|\operatorname{Supp}\left(w_{1}\right)\right|>\sum_{b \in A} m_{b}$. Moreover we have that

$$
\begin{aligned}
|\operatorname{Supp}(w)| & \geq\left|\operatorname{Supp}\left(w_{1}\right)\right|-\left|\operatorname{Supp}\left(w_{2}\right)\right| \\
& >\sum_{b \in A} m_{b}-\sum_{b \in A}\left|H_{b}\right| \\
& >0
\end{aligned}
$$

which implies $|\operatorname{Supp}(w)| \geq 2$. In particular, $w \neq 1$. We have thus seen that $R G$ is primitive.

Finally, we shall show that $K G$ is primitive for any field K. Let K^{\prime} be a prime field. Since G satisfies $(*)$ and $\left|K^{\prime}\right| \leq|G|$, we have already seen that $K^{\prime} G$ is primitive. In view of Lemma 4.1, we need only show that $\Delta(G)=1$.

Let g be a non-identity element in G. We can see that there exist infinite conjugate elements of g. In fact, if it is not true, then the set M of conjugate elements of g in G is a finite set. Since G satisfies $(*)$, for M, there exists $x_{1}, x_{2} \in G$ such that $M^{x_{1}}$ and $M^{x_{2}}$ are mutually reduced. Since g is in M, $\left(x_{1}^{-1} g x_{1}\right)\left(x_{2}^{-1} f x_{2}\right)^{-1} \neq 1$ for any $f \in M$, and thus $x_{1}^{-1} g x_{1} \neq x_{2}^{-1} f x_{2}$. Hence $\left(x_{1} x_{2}^{-1}\right)^{-1} g\left(x_{1} x_{2}^{-1}\right) \neq f$ for all $f \in M$, which implies a contradiction $x^{-1} g x \notin M$, where $x=x_{1} x_{2}^{-1}$. This completes the proof of theorem.

We call the free product $A * B$ of two non-identity groups A and B a strict free product provided that it is not isomorphic to $\mathbb{Z}_{2} * \mathbb{Z}_{2}$. In addition, we define a group G to be a locally strict free product if for each finite number of elements g_{1}, \cdots, g_{m} in G, there exists a subgroup H of G which is isomorphic to a strict free product such that $\left\{g_{1}, \cdots, g_{m}\right\} \subset H$. The following corollary, which generalizes the result of [6], follows from Theorem 2.1:

Corollary 4.4. Let R be a domain and G a locally strict free product. Suppose that G has a free subgroup whose cardinality is the same as that of G. If $|R| \leq|G|$ then the group ring $R G$ is primitive.

In particular, $K G$ is primitive for any field K.

5 Proof of Theorem 2.2

Throughout this section, $F=\langle X\rangle$ denotes the free group with a base X. Let $G=\langle X \mid R\rangle$ denote the one relator group with the set of generators X with a relation R, where R is a cyclically reduced word in F. For a word W in F, if $R=W^{n}, n>1$ and W is not a proper power in F, then G is called a one relator group with torsion. Let W be a word in F. We denote the normal closure of W in F by $\mathcal{N}_{F}(W)$. For a cyclically reduced word $W, \mathcal{W}_{F}(W)$ denotes the set of all cyclically reduced conjugates of both W and W^{-1}. If W_{i}, \cdots, W_{t} are reduced words in F and $W=W_{i} \cdots W_{t}$ is also reduced, that is, there is no cancellation in forming the product $W_{i} \cdots W_{t}$, then we write $W \equiv W_{i} \cdots W_{t}$. For $Y \subset X,\langle Y\rangle_{G}$ is the subgroup of G generated by the homomorphic image in G of Y.

Lemma 5.1. Let $n>1$, and let $G=\langle X \mid R\rangle$, where W be a cyclically reduced word in F and $R=W^{n}$.
(1) (See [18, Theorem], cf. [8]) If $1 \neq V \in \mathcal{N}_{F}(R)$, then V contains a subword $S^{n-1} S_{0}$, where $S \equiv S_{0} S_{1} \in \mathcal{W}_{F}(W)$ and every generator which appears in W appears in S_{0}.
(2) (See [12, Theorem]) The centralizer of every non-trivial element in G is a cyclic group.

Lemma 5.2. For $n>1$, let $G=\langle X \mid R\rangle$ with $|X|>1$, where $R=W^{n}$ and W is a cyclically reduced word in F.
(1) If $S, T \subseteq X$, then $\langle S\rangle_{G} \cap\langle T\rangle_{G}=\langle S \cap T\rangle_{G}$.
(2) $\Delta(G)=1$.

Proof. (1): If $S \subseteq T$ or $T \subseteq S$, then the assertion is clear, and so we may assume $S \nsubseteq T$ and $T \nsubseteq S$. It is obvious that $\langle S\rangle_{G} \cap\langle T\rangle_{G} \supseteq\langle S \cap T\rangle_{G}$. Suppose, to the contrary, that $\langle S\rangle_{G} \cap\langle T\rangle_{G} \supsetneq\langle S \cap T\rangle_{G}$. Then there exist reduced words
$u=u(s, a, \cdots, b)$ in $\langle S\rangle \backslash\langle S \cap T\rangle$ and $v=v(t, c, \cdots, d)$ in $\langle T\rangle \backslash\langle S \cap T\rangle$ such that $u v \in \mathcal{N}_{F}(R)$, where $a, \cdots, b \in S, c, \cdots, d \in T, s \in S \backslash(S \cap T)$, and $t \in T \backslash(S \cap T)$. Let w be the reduced word for $u v$, say $w \equiv u_{1} v_{1}$, where $u \equiv u_{1} u_{2}$ and $v \equiv u_{2}^{-1} v_{1}$. Then $w \equiv u_{1} v_{1} \in \mathcal{N}_{F}(R)$. However, u_{1} involves s but not t, and v_{1} involves t but not s, which contradicts the assertion of Lemma 5.1 (1).
(2): Suppose , to the contrary, $\Delta(G) \neq 1$; thus there exists $1 \neq g \in G$ such that $\left[G: C_{G}(g)\right]<\infty$. By Lemma $5.1(2), C_{G}(g)$ is cyclic and in fact infinite cyclic because $|G|$ is not finite. Thus G is virtually cyclic and so, as is well-known, there exists a normal subgroup N of finite order such that G / N is isomorphic to either the infinite cyclic group \mathbb{Z} or the infinite dihedral group $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ (See [9, 137p]).

Since a one relator group with torsion is isomorphic to neither \mathbb{Z} nor $\mathbb{Z}_{2} * \mathbb{Z}_{2}$, we may assume $N \neq 1$. In both cases of $G / N \simeq \mathbb{Z}$ and $G / N \simeq \mathbb{Z}_{2} * \mathbb{Z}_{2}$, there exists $x \in G \backslash N$ such that $\langle x\rangle_{G}$ is a infinite cyclic subgroup of G. Since $|N|$ is finite, then it is easily seen that there exists $m>0$ such that $x^{-m} f x^{m}=f$ for all $f \in N$, which implies $N \subset C_{G}\left(x^{m}\right)$; a contradiction, because a infinite cyclic group does not contain non-trivial finite subgroups.

Let $X=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ with $m>1$ and $F=\langle X\rangle$. To avoid unnecessary subscripts, we denote generators, $x_{1}, x_{2}, \cdots, x_{m}$, by t, a, \cdots, b. We consider the one relator group $G=\langle X \mid R\rangle$, where $R=W^{n}, n>1$ and $W=W(t, a, \cdots, b)$ is a cyclically reduced word which is not a proper power. We assume that all generators appear in W. We shall see that there exists a normal subgroup L of G such that G / L is cyclic and L satisfies the assumption in Corollary 4.4. That is, G has the following type of subgroup G_{∞} and L is a subgroup of it:

$$
\begin{equation*}
G_{\infty}=\left\langle X_{\infty} \mid R_{i}, i \in \mathbb{Z}\right\rangle \text { with } R_{i}=W_{i}^{n}(n>1), \tag{7}
\end{equation*}
$$

where $X_{\infty}=\left\{a_{j}, \cdots, b_{j} \mid j \in \mathbb{Z}\right\}$ and for each $i \in \mathbb{Z}, W_{i}$ is a cyclically reduced word in the free group $F_{\infty}=\left\langle X_{\infty}\right\rangle$. Let $\alpha_{*}, \cdots, \beta_{*}$ be respectively the minimum subscripts on a, \cdots, b occurring in W_{0}, and let $\alpha^{*}, \cdots, \beta^{*}$ be the maximum subscript on a, \cdots, b occurring in W_{0}, respectively. That is,

$$
W_{i}=W_{i}\left(a_{\alpha_{*}+i}, \cdots, a_{\alpha^{*}+i}, \cdots, b_{\beta_{*}+i}, \cdots, b_{\beta^{*}+i}\right) .
$$

Let μ be the maximum number in $\left\{\alpha^{*}-\alpha_{*}, \cdots, \beta^{*}-\beta_{*}\right\}$. For $t \in \mathbb{Z}$, we set subgroups Q_{t} and P_{t} of G_{∞} as follows:

$$
\left\{\begin{array}{l}
\text { For } \mu \neq 0, \tag{8}\\
Q_{t}=\left\langle a_{t+i}, \cdots, b_{t+j} \mid \alpha_{*} \leq i \leq \alpha^{*}, \cdots, \beta_{*} \leq j \leq \beta^{*}\right\rangle_{G_{\infty}}, \\
P_{t}=\left\langle a_{t+i}, \cdots, b_{t+j} \mid \alpha_{*} \leq i \leq \alpha^{*}-1, \cdots, \beta_{*} \leq j \leq \beta^{*}-1\right\rangle_{G_{\infty}} . \\
\text { For } \mu=0, \\
Q_{t}=\left\langle a_{t+\alpha_{*}}, \cdots, b_{t+\beta_{*}}\right\rangle_{G_{\infty}}, \\
P_{t}=1 .
\end{array}\right.
$$

Then P_{t} is a subgroup of Q_{t} and Q_{t} has the following presentation:

$$
\begin{equation*}
Q_{t} \simeq\left\langle a_{t+\alpha_{*}}, \cdots, a_{t+\alpha^{*}}, \cdots, b_{t+\beta_{*}}, \cdots, b_{t+\beta^{*}} \mid R_{t}\right\rangle . \tag{9}
\end{equation*}
$$

In what follows, let $\nu=\beta^{*}-\beta_{*}$, and replacing the order of a_{i}, \cdots, b_{i} in X_{∞} if necessary, we may assume that $\mu=\alpha^{*}-\alpha_{*} \geq \cdots \geq \beta^{*}-\beta_{*}=\nu$. In view of the Magnus' method for Freiheitssatz, we may identify G_{∞} as the union of the chain of the following G_{i} 's (see [11] or [10]):

$$
\begin{align*}
& G_{\infty}=\bigcup_{i=0}^{\infty} G_{i}, \text { where } \tag{10}\\
& G_{0}=Q_{0}, \quad G_{2 i}=Q_{-i} *_{P_{-i+1}} G_{2 i-1}, \text { and } G_{2 i+1}=G_{2 i} *_{P_{i+1}} Q_{i+1} .
\end{align*}
$$

By lemma 5.2 (1), we can get the next lemma:
Lemma 5.3. If H is a subgroup of G_{∞} generated by a finite subset Y of X_{∞}; namely $H=\langle Y\rangle_{G_{\infty}}$, then there exists a positive integer t such that $H \subseteq G_{2(t-1)}$ and $H \cap P_{t}=1$.

Lemma 5.4. If G_{∞} and W_{i} are as in (7), then for each finite number of elements g_{1}, \cdots, g_{m} in G_{∞}, there exists an integer t such that $\left\langle g_{1}, \cdots, g_{m}, W_{t}\right\rangle_{G_{\infty}}$ is the free product $\left\langle g_{1}, \cdots, g_{m}\right\rangle_{G_{\infty}} *\left\langle W_{t}\right\rangle_{G_{\infty}}$.

Proof. Let Y be the subset of X_{∞} consisting of generators appeared in g_{i} for all $i \in\{1, \cdots, m\}$. By virtue of Lemma 5.3, for $H=\langle Y\rangle_{G_{\infty}}$, there exists $t>0$ such that $H \subseteq G_{2(t-1)}$ and $H \cap P_{t}=1$.

Now, by (10), $G_{2 t-1}=G_{2(t-1)} *_{P_{t}} Q_{t}$, where Q_{t} is as described in (9) and P_{t} is as described in (8). Since $W_{t}^{n}=R_{t}$ is the relator of Q_{t}, we have $\left\langle W_{t}\right\rangle_{G_{\infty}} \subset Q_{t}$. As is well known, $W_{t}^{m} \neq 1$ in Q_{t} for $1 \leq m<n$. Moreover, it holds that $P_{t} \cap\left\langle W_{t}\right\rangle_{Q_{t}}=1$. In fact, if not so, there exists $m>0$ such that $W_{t}^{m} \in P_{t}$ in Q_{t}. Since P_{t} is a free subgroup of Q_{t} by Freiheitssatz, we have that $1 \neq\left(W_{t}^{m}\right)^{n}=\left(W_{t}^{n}\right)^{m}$ in Q_{t}. However, this contradicts the fact that W_{t}^{n} is the relator of Q_{t}. We have thus shown that $P_{t} \cap\left\langle W_{t}\right\rangle_{Q_{t}}=1$. Combining this with $H \cap P_{t}=1$, we see that $\left\langle Y, W_{t}\right\rangle_{G_{2 t-1}}=\langle Y\rangle_{G_{2 t-1}} *\left\langle W_{t}\right\rangle_{G_{2 t-1}}=H *\left\langle W_{t}\right\rangle_{G_{\infty}}$. Since $\left\langle g_{1}, \cdots, g_{m}\right\rangle_{G_{\infty}} \subseteq H$, we have that $\left\langle g_{1}, \cdots, g_{m}, W_{t}\right\rangle_{G_{\infty}}=\left\langle g_{1}, \cdots, g_{m}\right\rangle_{G_{\infty}} *\left\langle W_{t}\right\rangle_{G_{\infty}}$.

Proof of Theorem 2.2 Let $G=\langle X \mid R\rangle$ be the one relator group with torsion, where $|X|>1, R=W^{n}, n>1$ and W is a cyclically reduced word which is not a proper power. If there exists $x \in X$ such that W contains none of x or x^{-1}, then G is a non-trivial free product of groups both of which are not isomorphic to \mathbb{Z}_{2}. Hence we may assume that $X=\left\{x_{1}, \cdots, x_{m}\right\}(m>1)$ and W contains either x_{i} or x_{i}^{-1} for all $i \in\{1, \cdots, m\}$. In this case, the cardinality of G is countable, and it is well-known that G has a non-cyclic free subgroup. Moreover, by Lemma 5.2 (2), we see that $\Delta(G)=1$, and therefore, combining Corollary 4.4 with [19,

Theorem 1], it suffices to show that there exists a normal subgroup L of G such that G / L is cyclic and L satisfies the following condition (C) :
(C) For any $g_{1}, \cdots, g_{l} \in L$, there exists a free product $A * B$ in the set of subgroups of L such that $B \neq 1, a^{2} \neq 1$ for some $a \in A$, and $g_{1}, \cdots, g_{l} \in A * B$.

There are now two cases to consider: whether or not the exponent sum $\sigma_{x}(W)$ of W on some generator x is zero.

If for each $x \in X, \sigma_{x}(W) \neq 0$, say $\sigma_{x_{1}}(W)=\alpha$ and $\sigma_{x_{2}}(W)=\beta$, then by the Magnus' method for Freiheitssatz, $G \simeq\left\langle a^{\beta}, x_{2}, \cdots, x_{m} \mid R^{*}\right\rangle \subset E$, where $R^{*}=\left(W^{*}\right)^{n}, W^{*}=W^{*}\left(a^{\beta}, x_{2}, \cdots, x_{m}\right)$ and $E=\left\langle a, x_{2}, \cdots, x_{m} \mid R^{*}\right\rangle$. Let $N=\mathcal{N}_{F_{*}}\left(x_{2} a^{\alpha}, x_{3} \cdots, x_{m}\right)$, where $F_{*}=\left\langle a, x_{2}, \cdots, x_{m}\right\rangle$. Then we have that $N \supset \mathcal{N}_{F_{*}}\left(R^{*}\right)$ and $N / \mathcal{N}_{F_{*}}\left(R^{*}\right) \simeq G_{\infty}$, where G_{∞} is as in (7), and so we may let $G_{\infty}=N / \mathcal{N}_{F_{*}}\left(R^{*}\right)$.

Let $F_{G}=\left\langle a^{\beta}, x_{2}, \cdots, x_{m}\right\rangle$ and $L=\left(N \cap F_{G}\right) / \mathcal{N}_{F_{G}}\left(R^{*}\right)$. Then we can easily see that L can be isomorphically embedded in G_{∞} and that G is a cyclic extension of L.

Let $g_{1}, \cdots, g_{l}(l>0)$ be in L with $g_{i} \neq 1$. In case of $n>2$, since $L \subset G_{\infty}$, by Lemma 5.4, there exists $t>0$ such that $\left\langle g_{1}, \cdots, g_{l}\right\rangle_{G_{\infty}} *\left\langle W_{t}^{*}\right\rangle_{G_{\infty}}$. We have then that $1 \neq W_{t}^{*} \in L$ and $\left(W_{t}^{*}\right)^{2} \neq 0$ because $n>2$, and so L satisfies the condition (C). On the other hand, in case of $n=2$, let $p>0$ be the maximum number such that either $a^{p \beta}$ or $a^{-p \beta}$ is appeared in $W^{*}=W^{*}\left(a^{\beta}, x_{2}, \cdots, x_{m}\right)$. Set $v=a^{(p+1) \beta} x_{2} a^{-(p+1) \beta} x_{2}^{-1}$ so that $v \in F_{G}$. Moreover, since $\sigma_{a}(v)=0$ and $\sigma_{x_{2}}(v)=0$, the homomorphic image \bar{v} of v is contained in L. Suppose that $\bar{v}^{2}=1 ;$ namely, $v^{2} \in \mathcal{N}_{F_{G}}\left(R^{*}\right)$. In view of Lemma 5.2 (1), a reduced word v^{2} contains a subword $S_{0} S_{1} S_{0}$ such that $S_{0} S_{1}$ is a cyclic shift of W^{*} and S_{0} contains all generators appeared in W^{*}. Since only two letters a and x_{2} are appeared in v^{2}, we have that $W^{*}=W^{*}\left(a^{\beta}, x_{2}\right)$. Moreover, $S_{0} S_{1} S_{0}$ involves a subword of type $x_{2}^{\varepsilon_{1}} a^{q} x_{2}^{\varepsilon_{2}}$ with $|q| \leq|p \beta|$, where $\varepsilon_{i}= \pm 1$. However, since $|(p+1) \beta|>|q|$, there exists no such subword in v^{2}, which implies a contradiction. We have thus shown that $\bar{v}^{2} \neq 1$. By virtue of Lemma 5.4, for g_{1}, \cdots, g_{l} and \bar{v}, there exists $t>0$ such that $\left\langle\bar{v}, g_{1}, \cdots, g_{l}\right\rangle_{G_{\infty}} *\left\langle W_{t}^{*}\right\rangle_{G_{\infty}}$. Since $1 \neq W_{t}^{*} \in L$ and $\bar{v}^{2} \neq 1$, we have thus proved that L satisfies the condition (C).

If W has a zero exponent sum $\sigma_{x}(W)$ on x for some $x \in X$, say $\sigma_{x_{1}}(W)=0$, then we set $N=\mathcal{N}_{F}\left(x_{2}, x_{3} \cdots, x_{m}\right)$ and $L=N / \mathcal{N}_{F}(R)$, where $F=\left\langle x_{1}, x_{2}, \cdots, x_{m}\right\rangle$, $R=W^{n}$ and $W=W\left(x_{1}, \cdots, x_{m}\right)$. It is obvious that $L \simeq G_{\infty}$ and G is a cyclic extension of L. Moreover, we can easily see that L satisfies the condition (C). This completes the proof of the theorem.

References

[1] B. O. Balogun, On the primitivity of group rings of amalgamated free products, Proc. Amer. Math. Soc., 106(1)(1989), 43-47
[2] M. A. Chaudhry, M. J. Crabb and M. McGregor, The primitivity of semigroup algebras of free products Semigroup Forum, 54(2)(1997), 221-229
[3] O. I. Domanov, A prime but not primitive regular ring, Uspekhi. Mat. Nauk., 32)(1977), 219-220
[4] O. I. Domanov, Primitive group algebras of polycyclic groups, Sibirsk. Mat. Ž., 19(1)(1978), 37-43
[5] D. R. Farkas and D. S. Passman, Primitive Noetherian group rings, Comm. Algebra, 6(3)(1978), 301-315.
[6] E. Formanek, Group rings of free products are primitive, J. Algebra, 26(1973), 508-511
[7] E. Formanek and R. L. Snider, Primitive group rings, Proc. Amer. Math. Soc., 36(1972), 357-360
[8] J. Howie and S. J. Pride, A spelling theorem for staggered generalized 2complexes, with applications, Invent. math., 76 (1984), 55-74
[9] D. Juan-Pineda and Ian J. Leary, On classifying spaces for the family of virtually cyclic subgroups, Recent developments in algebraic topology, Contemp. Math., 407, Amer. Math. Soc., Providence, RI, 407(2006), 135-145
[10] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Ergeb. der Math. und ihrer Grenzgeb., 89, Springer, Berlin 1977
[11] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley 1966, Second Edition, Dover Publication, New York, 1976
[12] B. B. Newman, The soluble subgroups of a one-relator group with torsion, J. Austral. Math. Soc., 16(1973), 278-285
[13] T. Nishinaka, Group rings of proper ascending HNN extensions of countably infinite free groups are primitive, J. Algebra, 317(2007), 581-592
[14] T. Nishinaka, Group rings of countable non-abelian locally free groups are primitive, Int. J. algebra and computation, 21(3) (2011), 409-431
[15] A. Ju. Ol'shanskiĭ, An infinite simple torsion-free Noetherian group, Izv. Akad. Nauk BSSR, Ser. Mat., 43(1979), 1328-1393.
[16] D. S. Passman, Primitive group rings, Pac. J. Math., 47(1973), 499-506.
[17] J. E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc., 36(3)(1978), 385-447. Corrigenda "Prime ideals in group rings of polycyclic groups" Proc. London Math. Soc., 36(3)(1979), 216-218.
[18] Paul E. Schupp, A Strengthened Freiheitssatz, Math. Ann., 221(1976), 73-80.
[19] A. E. Zalesskii, The group algebras of solvable groups, Izv. Akad. Nauk BSSR, ser Fiz. Mat., (1970), 13-21.

[^0]: *Partially supported by Grants-in-Aid for Scientific Research under grant no. 23540063

