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Abstract

In [TV1], Toen and Vezzosi show that RHomgeom(T,X ) is a Se-
gal groupoid, for T a Segal topos, X = Loc(X) the Segal category
of locally constant stacks on a CW complex X. Taking the real-
ization of such a groupoid as in [HS] defines a pro-object HT =
|RHomgeom(T,−)| that is defined to be the homotopy shape of the
topos T ([TV1]). What we do instead is fix X , any Segal topos, and
let T vary, and use the fact that RHom∗Lex(X , T ) = RHomgeom(T,X )
is a fundamental ∞-groupoid. We then prove that X is a localiza-
tion of the Segal category of local systems on RHomgeom(T,X ), in the
spirit of [Hoy] where it is proved, morally, that local systems on HT

are equivalent to T itself. We provide one application of this formal-
ism, regarding the Segal topos X = dSt(k) of derived stacks, for k a
commutative ring, as corresponding to manifestations of natural laws,
themselves modeled by simplicial algebras, objects of sk-CAlg ([TV2],
[TV3], [TV4], [T]).
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1 Introduction

From the perspective of shape theory, one can define the shape of a Se-
gal topos T , as Toen and Vezzosi did in [TV1], as being defined by HT =
|RHomgeom(T,−)|. Here | | denotes the realization of a Segal category as
in [HS], left adjoint of the fundamental groupoid functor Π∞. In [TV1] it
is proven that for X a CW complex, we have for T = Loc(∗) = Top, X '
|RHomgeom(Top,Loc(X))|, or equivalently Π∞(X) ' RHomgeom(Top,Loc(X)).
In SGA 1 however, Grothendieck suggests that the category of fiber functors
from X to T , RHom∗SeT(X , T ) ' RHomgeom(T,X ), could be called a funda-
mental groupoid. This can be made precise, as we will do in this paper, but
this won’t be the fundamental ∞-groupoid of X itself, rather it will be the
fundamental ∞-groupoid of left exact functors on X instead. Indeed recall
that for T and X two Segal topos, or more generally, two topos, a geometric
morphism f from T to X consists of a pair of adjoint functors, f∗ : T → X and
f ∗ : X → T , f ∗ a f∗, f ∗ left exact. Thus if SeT denotes the category of Segal
topos, we adopt the notation RHomSeT(T,X ) for RHomgeom(T,X ), which, as
we will see, is equivalent to RHom∗SeT(X , T ) ' RHom∗,SeT(T,X )op depending
on whether we fix our attention on left adjoints, or right adjoints. Now it
turns out fiber functors are left exact, and working with Segal topos it is
therefore natural, in the spirit of Grothendieck, to have the groupoid of fiber
functors in the Segal setting as being given by RHom∗SeT(X , T ), sub-Segal

category of RHom(X , T ) = X̂ op, relative to T of course, which is implied

here. Hence we adopt the notation RHom∗SeT(X , T ) = Π∞,T X̂ op. We prove,
using Toen’s work in [TV1], that this is again a Segal topos for any T . Con-
sidering local systems iT = RHom(−, T ) on it, we show X is a localization

of iTΠ∞,T X̂ op. If we apply this in particular to a description of all natural
phenomena, one can envision that laws of nature be modeled by simplicial
algebras, objects in sk-CAlg for k a commutative ring, realized via derived
stacks, the collection of which is a Segal topos dSt(k), to which we can ap-
ply all this formalism. In particular X = dSt(k) being a Segal category,
RHomSeT(X ,X ) = U is another Segal category, and iXU = RHom(U ,X ) is
yet another Segal category V , whose localization gives back X . We leave
the reader to draw his own conclusions from such a result; mathematically
it appears as nothing more than a simple exercise. Its interpretation how-
ever, depending on one’s own philosophical convictions, is very deep. One
advantage of using stacks to model algebraic realizations of natural laws is
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that one can completely bypass the use of ”target spaces” and ”fields” liv-
ing on such spaces, whose dynamics is given by equations of motion derived
from an independent ”Lagrangian”, notwithstanding the fact that such tar-
get spaces for the most part would be obtained from compactification(s).
Here dynamics is dictated by coherence conditions inherent in the definition
of stacks themselves, and in the fact that all of them combined form a Se-
gal topos, with a basic modus operandi following some basic rules encoded
in simplicial algebras. This has the advantage of repackaging all of Physics
in a purely Algebro-Geometric object such as a Segal Topos, in the spirit
of Kontsevich’s take on the Mirror Symmetry problem by introducing the
Homological Mirror Symmetry formalism ([K]).

Acknowledgments. The author would like to thank J. Bergner and M. Hoy-
ois for useful exchanges, as well as the organizers of the conference “Exchange
of Mathematical Ideas - 2016” at Prescott where this work was completed.
The author would like to thank J. Gemmer in particular for stimulating
conversations.

2 Grothendieck’s take on Galois Theory

We briefly remind the reader of the following fundamental result of Galois
Theory: for K a finite Galois extension of a field k, G = Gal(K/k), we
have a one-to-one correspondence between subfield extensions k ⊂ E ⊂ K
and subgroups H ⊂ G, given by E 7→ Gal(K/E) and H 7→ KH . It was
Grothendieck’s idea in SGA 1 to categorize this result, as clearly recounted
in [D], by first using the well-known fact that there is a one-to-one correspon-
dence between conjugacy classes of subgroups of G and isomorphism classes
of transitive G-sets, whose category we denote tSetsG, and by regarding field
extensions as a category Cop whose objects are fields, k then becoming the
terminal object of C. One then moves into the categorical realm. An object A
of C being fixed, and under the assumption that for all objects X of C, there is
a morphism A→ X, which is further a strict epi, meaning the joint coequal-
izer of all the parallel pairs that it coequalizes, if we assume we have a notion
of categorical quotient A → A/H, preserved by HomC(A,−) = [A,−], and
finally if we assume that End(A) = Aut(A), then under those assumptions
we have an adjoint equivalence:

[A,−] : C � tSetsG : A×G − (1)
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thereby providing an abstraction of the classical Galois statement. Grothendieck’s
idea then was to observe that [A,−] being a map from C to Set, one may
as well start from a fiber functor F : C → fSets, left exact among other
things, and under mild conditions on C as well as F itself, one obtains a
generalization of the above result ([G], [D]). One would first show that F
is pro-corepresentable, F = [P,−], from which one would make a transition
from the result given in (1) to the following adjoint equivalence:

F = HomC(P,−) = [P,−] : C � fSetsπ : P ×π −

π = Aut(P )op a profinite group. Grothendieck then observed that this de-
pended of course on F and that a way to make this independent of the
choice of a fiber functor was to consider Γ = {F : C → fSets}, which he
argued is a groupoid. Considering local systems on Γ, meaning introducing
i = HomC(−, fSets), he then proved in a few lines that iΓ ' C.

3 Grothendieck’s Galois Theory for Segal Topos

We now promote C and fSets to the status of Segal topos as introduced in
[TV1]. Thus our base category C becomes a fixed Segal category X , and we
consider functors valued in any Segal topos T . Fiber functors in the Segal
topos setting would be represented by left exact left adjoints. This justifies
the definition:

RHom∗SeT(X , T ) = RHomSeT(T,X )

as given in [TV1] where RHomSeT is denoted RHomgeom instead. Recall
from the same paper that SePC, the category of Segal pre-categories, is
a symmetric monoidal model category ([Ho]) with the direct product as
monoidal product, hence Ho(SePC) would have an internal Hom object
([Ho]) denoted RHom(A,B) ∈ Ho(SePC) for A,B ∈ Ho(SePC), where
RHom(A,B) ∼= Hom(A,RB), Hom the internal Hom object in SePC. How-
ever, we also have an anti-equivalence RHom∗SeT(X , T ) ' RHom∗,SeT(T,X )op.
That this is an anti-equivalence follows from the commutative diagram be-
low; for X and Y two Segal topos, f, g : X → Y two geometric morphisms,
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α : f ∗ ⇒ g∗, x ∈ X0 and y ∈ Y0, there corresponds β : g∗ ⇒ f∗ as in:

X (g∗y, x)
∼=−−−→ Y(y, g∗x)

α∗y

y yβx,∗
X (f ∗y, x) −−−→∼= Y(y, f∗x)

Hence we can also define RHomSeT(T,X ) as:

RHomSeT(T,X ) = RHom∗,SeT(T,X )op

Theorem 3.1. For X and T two Segal topos, RHomSeT(T,X ) is a Segal
groupoid.

Proof. X being a Segal topos, by definition there is a fully faithful map
i : X → B̂ = RHom(Bop,Top), B a Segal Category, Top = Loc(∗) = L(sSet).
This map being fully faithful, which we abbreviate by ff, it induces a ff map
RHom(T,X )→ RHom(T, B̂):

RHom∗,SeT(T,X ) RHom∗,SeT(T, B̂)

RHom(T,X ) RHom(T, B̂)

ff

ff
ff

ff

ff

6

-

6

-

q q q q q
q q q q q�

The diagonal map is fully faithful by composition, and the bottom map
is so as right adjoints with a left exact left adjoint map to right adjoints
with a left exact left adjoint as one can check. Finally using the adjunction
formula RHom(A×B,C) ' RHom(A,RHom(B,C)) of [TV1] limited to right
adjoints with a left exact left adjoint:

RHom∗,SeT(T, B̂) = RHom∗,SeT(T,RHom(Bop,Top))

' RHom∗,SeT(T ×L Bop,Top)

= RHom(Bop,RHom∗,SeT(T,Top))

= RHom(Bop,RHomSeT(T,Top)op)
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and then we use the fact that RHomSeT(T,Top) is a Segal groupoid as proved
in [TV1], so that RHom(Bop,RHomSeT(T,Top)op) itself is a Segal groupoid,
hence so is RHom∗,SeT(T, B̂), and RHom∗,SeT(T,X ) faithfully maps into it, so
is a Segal groupoid, or equivalently, RHomSeT(T,X ) is a Segal groupoid.

Regarding notations, since X̂ op = RHom(X , T ) relative to T , and that
RHom∗SeT(X , T ) is a full-sub Segal category thereof ([TV1]), then we will

write Π∞,T X̂ op for RHomSeT(T,X ). This then defines a functor, for any
Segal topos T :

Π∧∞,T : SeT→ SeGpd

X 7→ Π∞,T X̂ op

where SeGpd denotes the category of Segal groupoids. We now define:

iT : SeGpd→ SeCat

A 7→ iT (A) = RHom(A, T )

Theorem 3.2. For T ∈ SeT, iT = RHom(−, T ), then:

iT : SeGpd � SeT : Π∧∞,T

iT a Π∧∞,T

It follows that for all Segal topos X we have a unique counit map:

iTΠ∞,T X̂ op → X

Proof. It suffices to write, for A ∈ SeGpd, using the adjunction formula for
left exact left adjoints:

RHomSeT(iTA,X ) = RHom∗SeT(X , iTA)

= RHom∗SeT(X ,RHom(A, T ))

' RHom∗SeT(X ×L A, T )

' RHom(A,RHom∗SeT(X , T ))

= RHom(A,RHomSeT(T,X ))

= RHom(A,Π∞,T X̂ op)

where we have chosen to define geometric morphisms by their left adjoints.
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Note that this is functorial in T : a geometric morphism u : T → T ′

induces a morphism RHomSeT(T,X ) ← RHomSeT(T ′,X ) ([MM]), hence a
morphism RHom(RHomSeT(T,X ), T ) → RHom(RHomSeT(T ′,X ), T ), so we
consider:

RHom(RHomSeT(T,X ), T ) RHom(RHomSeT(T ′,X ), T )

RHom(RHomSeT(T ′,X ), T ′)

-

?

q q q q q q q q q q q q q q q q q qj
hence giving a map iTΠ∞,T X̂ op → iT ′Π∞,T ′X̂ op, giving rise to a colimit dia-
gram:

iTΠ∞,T X̂ op

iT ′Π∞,T ′X̂ op

XcolimT iTΠ∞,T X̂ op

iTopΠ∞,TopX̂ op = iΠ∞X̂ op

�
�
�
�
�
�
�
�
�
�
���

�
�
�
��

A
A
AAK

B
B
B
B
B
B
B
B
B
B
B
BM

6

-

We now argue that X is a localization of iTΠ∞,T X̂ op for all Segal topos T .
Had we fixed T and let X vary, taking the realization of the Segal groupoid
RHomSeT(T,X ), we would have found that we have a fully faithful embed-
ding as in [Hoy]. However our interest was not in Shape Theory but in
Grothendieck’s interpretation of Galois Theory only, with a special emphasis
on fiber functors, the collection of which is the Segal groupoid Π∞,T X̂ op.
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Theorem 3.3. For all Segal Topos T , a fixed Segal topos X is a localization
X = `(iTΠ∞,T X̂ op).

Proof. In writing iT = RHom(−, T ), we place ourselves in Ho(SePC), so if
we write iTRHomSeT(T,X ), the object RHomSeT(T,X ) is seen as an object
in Ho(SePC), and RHomSeT(T,X ) being a Segal groupoid, in the homotopy
category of Segal categories, all its objects are isomorphic, so it suffices to
consider one of them. Hence:

iTRHomSeT(T,X ) ∼= {g∗ : X Lex−−→ T} × T

where Lex stands for left exact. It suffices that we pick one such functor.
Consider g∗ = HomX (g,−), and more precisely, consider g = 0X , the initial
object of X . For all f ∈ X , HomX (g, f) ∈ sSet, and we make this T -valued
by using the fact that T a Segal topos is in particular a Segal category, or a
bisimplicial set as defined in [GJ], where it is shown that bisimplicial sets are
tensored over simplicial sets. Hence we have a functor into T by considering
HomX (0X ,−)⊗ 0T for instance. Then with such a choice:

iTRHomSeT(T,X ) ' X0/ × T ' X × T

which projects down to X , a left exact map, and X itself has a fully faithful
embedding into X × T , hence we have a localization as claimed.

4 Natural Phenomena

We regard natural phenomena as following some basic rules, or fundamen-
tal laws, encoded in algebras. Coherent manifestations of such laws will be
modeled by stacks valued in simplicial sets, and according to the philoso-
phy of derived algebraic geometry, it is natural then to consider simplicial
algebras. Hence we start with a commutative ring k, we let k-Mod be the
category of k-modules, commutative monoids of which form sk-CAlg the cat-
egory of simplicial k-algebras. Its opposite category dk-Aff = L(sk-CAlg)op

is referred to as the Segal category of derived affine stacks ([TV2], [TV3],
[TV4], [T]). We put the ffqc topology on this Segal category. The category
X = dSt(k) of affine stacks is a localization of the Segal category of pre-stacks

d̂k-Aff = RHom(dk-Affop,Top). The former is a Segal topos ([T]), hence all
the formalism above applies to dSt(k). In particular one can write:

X = `(iXΠ∞,X X̂ op) = `(RHom(RHomSeT(X ,X ),X ))
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X being a Segal category, we know there is a Segal category U such that
U = RHomSeT(X ,X ). This means that morphisms between stacks in X are
in U . This latter being a Segal category, RHom(U,X ) is yet another Segal
category V , and finally X = l(V). In particular a single representation of a
simplicial algebra, given by a derived stack F : sk-CAlg → sSet comes with
an identity map idF ∈ RHomSeT(X ,X ) which is valued in U . This means
a single object F takes its full meaning only in U , and not in X only. One
can contrast this with the concept of having a field in Physics being defined
on a target space, itself resulting from a compactification. Here the field is
replaced by a functor, the target space would presumably be sSet, and having
a compactified space would be replaced by having RHomSeT(X ,X ) = U .
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