Title: Polynomial projections onto the lines in $L^{p}[-1, 1]$ and remarkable extremal pairs

Speaker: Michael Prophet

Affiliation: UNI

Abstract: A continuous function on compact set *K* will attain its maximum on *K*. In our setting, it will be natural for us to say that our *C*(*K*) functions are maximized at *extremal points* of *K*. Specifically, through a standard identification, our *C*(*K*) elements will be projections from a real Banach space *X* onto a subspace *Y* of *X*; we say that projection $P_{\min} : X \to Y$ is minimal if $||P_{\min}|| \le ||P||$ for every projection *P* from *X* to *Y*. We can characterize P_{\min} via its extremal pairs. And when we fix Y := [1,t] ($p \ge 1$), we find that $P_{\min} : X \to Y$ has rather unexpected, indeed remarkable, extremal pairs – which allows for some interesting conclusion about minimal polynomial projections onto the lines in $L^p[-1,1]$. The motivation behind this is the open question of the determination of $P_{\min} : L^p[1,1] \to Y$ for $p \ge 1$ and $p \ne 2, \infty$.