Title: Polynomial projections onto the lines in $L^{p}[-1,1]$ and remarkable extremal pairs

Speaker: Michael Prophet

Affiliation: UNI

Abstract: A continuous function on compact set K will attain its maximum on K. In our setting, it will be natural for us to say that our $C(K)$ functions are maximized at extremal points of K. Specifically, through a standard identification, our $C(K)$ elements will be projections from a real Banach space X onto a subspace Y of X; we say that projection $P_{\text {min }}: X \rightarrow Y$ is minimal if $\left\|P_{\text {min }}\right\| \leq\|P\|$ for every projection P from X to Y. We can characterize $P_{\min }$ via its extremal pairs. And when we fix $Y:=[1, t](p \geq 1)$, we find that $P_{\text {min }}: X \rightarrow Y$ has rather unexpected, indeed remarkable, extremal pairs - which allows for some interesting conclusion about minimal polynomial projections onto the lines in $L^{p}[-1,1]$. The motivation behind this is the open question of the determination of $P_{\text {min }}: L^{p}[1,1] \rightarrow Y$ for $p \geq 1$ and $p \neq 2, \infty$.

